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Abstract – A large number of non-repetitive multi-year hourly solar radiation time-series dataset are desired when 
applying Monte Carlo techniques for planning and design of solar energy systems. Solar radiation models which 
utilize the clearness index and average value decomposition methods are commonly used to generate synthetic set of 
solar irradiances for this purpose. In this paper, a novel stochastic solar radiation model based on probability 
distributions of the first-order differences of hourly global solar horizontal radiation is proposed. The first-order 
differences are modeled using a trend component and a stochastic component represented using the cumulative 
distribution functions, both extracted from historical data taken over a window of 31 days around the considered day 
of the year. Measured solar radiation data from four different locations with varying climate characteristics were 
used to evaluate the proposed model in comparison to two previously reported models. The proposed method 
performed consistently better in terms of the similarity of probability distributions and autocorrelation functions, for 
all four locations and datasets. 
 
Keywords – first order differences of solar radiation, long-term solar radiation models, Monte Carlo simulation, 
solar irradiance, synthetic hourly solar radiation. 
 

1
 1. INTRODUCTION 

The typical approach used for designing solar energy 
systems is to use a short period of historical weather 
data or Typical Meteorological Year (TMY) data for the 
particular location to evaluate the performance of the 
system being designed. However, a short period of 
historical data or TMY data may not capture the full 
stochastic nature of the variations in solar radiation over 
the long design life of solar energy systems. In order to 
overcome this limitation and reliably evaluate the 
feasibility of design alternatives and impact of different 
operational strategies associated with solar energy 
systems, probabilistic methods like Monte Carlo 
simulation (MCS) is used [1]. MCS, which involves a 
large number of trials, is a popular approach for 
evaluating systems involving random processes. Each 
trial simulation requires a distinct time series of solar 
radiation over the design life cycle of the system as an 
input to fully characterize the randomness. MCS 
typically requires hundreds, if not thousands, of trails 
before convergence, and the simulation input demands 
non-repetitive datasets of solar irradiance for each 
simulation trial [2]. Therefore, synthetic solar irradiance 
generators are often used to support MCS and similar 
probabilistic analysis approaches to perform design 
studies associated with siting and sizing of solar 
collectors, energy storage, etc. of both solar thermal and 
photovoltaic (PV) systems [3]. 
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 Jordan and Liu proposed a model to determine the 
horizontal surface diffuse radiation, the long-term 
average hourly and daily sums of diffused solar 
radiation considering varying levels of cloudiness [4]. 
An approach is proposed to generate sequences of global 
horizontal irradiance utilizing the probability of 
sunshine and cloudiness in [5]. Procedures for 
generating random but coherent sequences of daily 
global insolation values, and then decompose daily 
irradiance to hourly irradiance values are presented in 
[6], [7]. These models use a library of Markov transition 
matrices generated from long-term measurements for 
this purpose [8]. Similarly, a stochastic procedure has 
been proposed for generating synthetic sets of hourly 
solar radiation values in [9]. All these models primarily 
use the clearness index as a measure to capture the 
cloudiness during the sunshine hours while generating 
synthetic sets of solar radiation. Clearness index is 
calculated as the ratio of measured solar irradiance to the 
extraterrestrial solar radiation. The extraterrestrial solar 
radiation is calculated based on the solar geometry and 
is assumed to be having higher values compared to the 
measured solar radiation constituting the maximum 
value of k as 1 [7]. However, it has been reported in [10] 
that cloud reflected light added to the direct solar 
radiation could sometimes make the measured solar 
radiation values higher than the extraterrestrial solar 
radiation, especially near the sunrise and sunset. These 
instances can make the clearness index values greater 
than 1 and introduce errors to the models which use 
clearness index as a primary measure [10].  

Reference [5] proposed to generate sequences of 
global horizontal irradiance utilizing the probability of 
sunshine and cloudiness models. According to the 
results, these models can reproduce the main 
characteristics of the natural time series of measured 
solar data. Many publications including [9], [11] further 
validate these models for different locations, and they 
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generally tend to preserve the statistical characteristics 
in the solar radiation estimations. To generate synthetic 
sequences of daily and hourly global horizontal 
irradiation (GHI) a model is proposed in  [12]. The 
model utilized synthetic daily and hourly models 
separately and reconcile them to match afterwards to 
generate synthetic solar radiation values. Additionally, 
some of the existing models intend to produce time 
series of hourly clearness index from the average values 
using stochastic procedures like average value 
decomposition [6] and Markov models [13], [14] to 
generate hourly clearness index from daily clearness 
index. However, solar system studies based on average 
values sometimes yield incorrect results [15]. 

There are attempts to develop solar irradiance 
generators capable of generating synthetic irradiance 
values at sub-hour time intervals for short periods such 
as 10-min [16], 5-min [17], 1-min [18] from mean 
hourly meteorological observation inputs. The 
motivation for developing these models are derived 
from the need of models that are essential in capturing 
the short-term temporal dynamics associated with solar 
radiation which can bring huge operational benefits 
such as real-time power system scheduling [19]. 
However, short-term synthetic solar irradiance 
generators are less applicable to long-term planning 
studies. Moreover, sizing, design, and performance 
evaluation of solar projects at any location under 
consideration require accurate and detailed information 
on both the stationarity and sequential properties of 
hourly solar radiation [20]. Analysis of the sequential 
characteristics of assorted meteorological variables, 
such as cloud cover, air temperature, wind speed, and 
relative humidity [15], [16], reveal very strong 
correlations at the one-hour time lag. Similar trend is 
revealed in a time series analysis of hourly GHI for a 
wide range of climatic stations that span temperate and 
tropic conditions [24]. The examination of the 
sequential behavior of hourly solar radiation revealed 
strong correlations over long persistence times nearly 
equal to the entire daylight period. The solar radiation 
time series input should reproduce not only the 
frequency of occurrence of various solar radiation 
levels for each hour of the day but also the persistence 
times and persistence strengths of hour-to-hour 
variations of radiation [20]. This is highly important 
with respect to the design of system including energy 
storage.  

A simple model capable of generating synthetic, 
non-repetitive, long-term solar irradiation datasets that 
replicates both the stationary and sequential 
characteristics of measured radiation is helpful for long-
term planning studies, especially for those using MCS 
based approaches. Since the solar radiation databases 
are becoming available for most locations in the world, 
such synthetic solar radiation data models should be 
easily developed using the solar radiation data for the 
interested location, measured over a sufficient period of 
time. Thus, the main goal of this paper is to develop a 
synthetic global horizontal solar radiation generation 
model that is usable for Monte Carlo simulation-based 
long-term energy planning studies. Followings are the 

specific objectives associated with this work:  
1. To analyze the statistical properties of the 

difference in global horizontal irradiation 
measurements between two consecutive time 
steps, which will be referred to as the first order 
differences in GHI. 

2. To develop a novel simple stochastic model for 
generating synthetic GHI data using the 
probability distribution functions of the first 
order differences in GHI. 

3. To compare the proposed model with two 
previously published models [7], [9] and 
examine the ability of generating time-series of 
GHI data that can reproduce the statistical 
properties of the first order difference in GHI.   

 
The rest of the paper is organized as follows: 

Section 2 provides the details regarding the measured 
solar data and primary locations used to build and test 
the proposed solar model. Section 3 explains the basic 
concept behind the first-order difference used to build 
the model, and Section 4 presents the proposed solar 
model, procedural flowchart used in generating the 
synthetic solar radiation using the proposed model. 
Section 5 describes two selected models from the 
existing literature for validating and comparing the 
results obtained using the proposed approach. Finally, 
simulation results have been demonstrated in Section 6 
and Section 7 concludes the paper. 

2.  SOLAR RADIATION DATA 

The measured hourly GHI data collected from four 
different locations with varying climate characteristics 
are used to develop and test the proposed model.  Solar 
data from four different locations were collected, which 
includes two locations from Canada and two locations 
from the US. The Natural Resources Canada (NRC) 
[21], an open database is used to obtain the solar data of 
Canadian locations and Solar anywhere [22] is used to 
get the solar data of US locations. 

The NRC’s dataset [21] includes solar radiation 
data of 492 Canadian locations and solar values are 
primarily based on satellite-derived solar estimates using 
methods developed at State University of New York. As 
per the database information, the average standard error 
for all sites are calculated as 5%. Solar anywhere 
database [22] generates the solar radiation data from 
geostationary satellite images using the Perez Model 
[23]. The databased utilize satellite images to generate 
GHI measurements in resolutions as high as 1 km. As 
per the database, the standard error for annual solar 
radiation at all sites are close to 5%. 

The distinction between the climate characteristics 
of the chosen locations are defined based on Köppen-
Geiger climate classification [24], and these locations 
can be classified as subarctic, warm summer humid 
continental, temperate Mediterranean climate, warm 
oceanic climates respectively. The motivation behind 
choosing different locations is to ensure the unbiased 
(towards one particular dataset) and the generic nature 
of the developed model. Table 1 shows the locations 
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considered along with the database details and climate 
classification of the considered locations. 

3. FIRST-ORDER DIFFERENCE IN GLOBAL 
HORIZONTAL SOLAR RADIATION 

A strong correlation between the hourly solar radiation 
over long persistence time periods has been reported by 
[20]. Similarly, the autocorrelation values shown in 
Figure 1 (a) reveals the correlative structure of hourly 
GHI solar data measured at La Grange, USA. The strong 
correlation between the current hour solar radiation with 
those of three past hours can be seen in the partial 
correlation shown in Figure 1 (b). The relationship of 
this natural time series with respect to its immediate 
time steps are therefore evident from these correlation 

values. A similar trend in the autocorrelation/partial 
correlation values were observed for other locations 
considered in this work. 

Therefore, a new property named as “First order 
difference in solar radiation” which simply represents 
the rise/fall of solar radiation at the current time step (t) 
with respect to the previous time step (t-1) is proposed 
in this work. The change in this global horizontal solar 
radiation between two adjacent time steps can be 
represented as: 

∆𝐻𝐺(𝑡) = 𝐻𝐺(𝑡) − 𝐻𝐺(𝑡 − 1) (1) 

where, 𝐻𝐺(𝑡) is the global horizontal solar radiation 
measured at the current time step 𝑡  and 𝐻𝐺(𝑡 −
1) is the value measured at the previous time step.

 
Table 1. Location details, available data period, sources of the database, and climate classification for the four 
locations considered in this work. 

Location Data period Database Köppen-Geiger climate 
classification 

Division 23, Manitoba (DM-23) 
(Lat: 57.95, Long: -100.05) 

January 2004 to 
December 2014 

Natural resources 
Canada [21] Subarctic 

Division 21, Manitoba (DM-21) 
(Lat: 54.45, Long: -100.05) 

January 2004 to 
December 2014 

Natural resources 
Canada [21] 

Warm summer humid 
continental 

Leavenworth, Washington (LW-W) 
(Lat: 47.75, Long: -120.65) 

January 2000 to 
December 2014 Solar anywhere [22] Temperate Mediterranean 

climate 
La Grange, Georgia (LG-G) 
(Lat: 41.65, Long: -104.45) 

January 2000 to 
December 2014 Solar anywhere [22] Warm oceanic climates 

 

 
(a) 

 

 
(b) 

Fig. 1. (a) Autocorrelation and (b) partial correlation of hourly measured GHI at La Grange, USA. 
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3.1 Annual ∆𝑯𝑮 Probability Distributions 

In order to demonstrate the relevance of hourly ∆𝐻𝐺  
values, the probability distributions of ∆𝐻𝐺  values 
calculated at three different time periods for 10 different 
years measured at La Grange, USA are shown in Figure 
2. The trend line in Figure 2 represents the distribution 
when all 10 years of data are considered together. Figure 
2 shows that ∆𝐻𝐺  values at a given hour in a given date 
has a characteristic distribution that does not change 
significantly from year to year. Similar distributions 
could be observed for ∆𝐻𝐺  values computed for other 
time periods too. Almost identical probability values for 
different years point to the fact that even though random 
variation exists with respect to measured solar radiation, 
annual probability distributions of ∆𝐻𝐺  values are 
similar and predictable. Even though the primary 
location considered in Figure 2 is La Grange, USA, a 
similar pattern of ∆𝐻𝐺  probability values were observed 
for other locations such as Leavenworth, in the USA and 

Division 23/21 in Manitoba, Canada. 
To quantify the similarity of the distributions of 

∆𝐻𝐺  values, we used two-sample Kolmogorov Smirnov 
test (KS-II) with varying confidence levels. The test was 
applied to all possible distinct pairs of years (10 years of 
data results in 45 distinct pairs) taking ∆𝐻𝐺  values for 
the respective pair of years as the samples from the two 
distributions. Figure 3 shows the passing rates of KS-II 
test for the four different times considered in Figure 2. 
Over 95% pairs of years passed the test (i.e. confirmed 
the null hypothesis that two distributions are the same) 
even when a 95% confidence level is considered. 
Therefore, it can be deduced that this characteristic 
distribution of ∆𝐻𝐺  values can be a useful metric to 
compare the accuracy of prediction models while 
comparing with the measured solar radiation data. In 
other words, any good synthetic solar irradiance 
generator should be able to preserve these characteristic 
distributions, in addition to the other statistical 
properties commonly considered. 
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(c)  

Fig. 2. Comparison of inter-annual ∆𝑯𝑮 probability distributions for ten different years for periods (a) 14:00-15:00 (b) 
11:00-12:00 (c) 15.00-16.00 measured at La Grange, USA. 

 

 
Fig. 3. Percentage of pairs of years that passed the KS-II test for asserting the similarity between the distributions of 

annual ∆𝑯𝑮 values computed at four different time periods measured at La Grange, USA. 
 
3.2 Inter-Annual ∆𝑯𝑮 Probability Distributions 

To examine the feasibility of utilizing the “first-order 
differences” in generating synthetic sets of solar 
radiation, the intra-annual characteristics distribution of 
the first-order differences were obtained considering 
∆𝐻𝐺  values from a 31-day window around the given 
date. These distributions for 10 different years are 
shown in Figure 4. It can be observed that the 
probability distributions for different years are similar, 
although the random deviations among them are higher 
when considered a 31-day window, instead of the whole 
year. Since these distributions are generated using a 
fewer number of samples of ∆𝐻𝐺  values such 
differences are expected. A similar pattern of ∆𝐻𝐺  
values were observed while considered other locations 
such as Leavenworth, in the USA and Division 23/21 in 
Manitoba, Canada. 

Similar to the annual ∆𝐻𝐺  probability distributions, 
KS-II test was used to quantify the similarity of the 

probability distributions with varying confidence levels 
as shown in Figure 5. It is evident from the figure that 
over 90% passing rate was observed for KS-II test, for 
all pairs of years, at all three confidence levels 
considered. Therefore, it is proposed to use a window of 
31 days centered around the current day to obtain the 
probability distributions of the first-order differences 
∆𝐻𝐺  values) for developing a synthetic hourly solar 
radiation data generation model. The characteristic 
obtained with a 31-day window would be more 
consistent with monthly average characteristics that are 
typically considered in most solar radiation models [7], 
however, other window lengths are possible. 
Experiments with 15, 21, and 41 day window lengths 
showed that adequately smooth probability distributions 
can be obtained. However, shorter the window length, 
smaller number of data points in the probability 
distribution functions. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 4. Comparison of inter-annual ∆𝑯𝑮 probability distributions for ten different years for the specific day and period 
(a) Feb 12, 14:00-15:00 (b) May 14, 11:00-12:00, and (c) Dec 15, 14.00-15.00, measured at La Grange, USA. 

 

 
Fig. 5. Percentage of pairs of years that passed the KS-II test for asserting the similarity between the distributions of 

intra-annual ∆𝑯𝑮 values computed at four different time periods. 
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3.3 Modeling ∆𝑯𝑮  using the Trend and Stochastic 
Components 

The first order differences ∆𝐻𝐺  can be considered as a 
combination of trend and stochastic component as 
shown in (2). A similar approach has been used by [25], 
[26] in the past. 

∆𝐻𝐺(𝑡) = ∆𝐻𝑇(𝑡) + ∆𝐻𝑆(𝑡) (2) 

The trend component ∆𝐻𝑇  represents the general 
trend in the pattern of first-order differences in solar 
radiation and the stochastic component ∆𝐻𝑆 represents 
the random deviations from the trend component. The 
trend component ∆𝐻𝑇(𝑡) for hour t in a given day can 
be obtained from the historical data. It is the mean of 

∆𝐻𝐺(𝑡)  values observed during a 31-day sliding 
window centered on the given day typically averaged 
over several years. Once the trend component is 
determined, the stochastic component ∆𝐻𝑆(𝑡)  can be 
calculated from historical data: 

∆𝐻𝑆(𝑡) = ∆𝐻𝐺(𝑡) − ∆𝐻𝑇(𝑡) (3) 

Figure 6 shows some sample time series plots of 
∆𝐻𝐺 , ∆𝐻𝑇 and ∆𝐻𝑆 values for different days in a year. 
The trend component ∆𝐻𝑇  values are calculated 
beforehand based on the measured solar radiation and 
CDFs are used to model the stochastic component ∆𝐻𝑆 
determined using (3). 

ΔHs 

 
(a) 

 

 
(b) 

 
Fig. 6. Sample time series plot illustrating the trend (∆𝑯𝑻) and actual (∆𝑯𝑮) component of first order difference in solar 

radiation for (a) March 12-14, and (b) July 23-25. 

 

4. FIRST-ORDER DIFFERENCE IN GLOBAL 
HORIZONTAL SOLAR RADIATION 

A good synthetic solar radiation generation model 
should be able to: 

• Follow the characteristic diurnal and seasonal 
variations, 

• Include the random variations due to clouds and 
atmospheric conditions, 

• Preserve statistical measures such as mean, 
standard deviation, etc., 

• Preserve correlation among consecutive time steps. 
 

In contrast to most previously published 
approaches that primarily model the solar radiation 
expected at a given hour, the new model proposed in 
this paper attempts to model the expected change in 

solar radiation at a given hour, ∆𝐻𝐺 . Then the solar 
radiation at hour t, 𝐻𝐺(𝑡)  is obtained by adding the 
change of solar radiation generated for hour t, ∆𝐻𝐺(𝑡) 
to the previous hour solar radiation 𝐻𝐺(𝑡 − 1) as shown 
in (4). By continuing this process, a time series of solar 
radiation data can be obtained in a recursive manner.  

𝐻𝐺(𝑡) = 𝐻𝐺(𝑡 − 1) + ∆𝐻𝐺(𝑡) (4) 

The proposed model is developed based on the 
following hypotheses: 
• Due to the sinusoidal like variation of clear sky 

radiation, solar radiation values of two consecutive 
time steps are highly correlated. Thus, the current 
hour solar radiation is highly relevant when 
generating the next hour solar radiation and forms 
the basis for (4).  
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• Characteristics of solar radiation within a 31-day 
period centered around the current day are similar. 
Thus, cumulative distribution functions required 
for the model are developed on a daily basis with a 
sliding window of 31 days similar to [12].  

• Annual first-order differences of the hourly solar 
radiation representing the trend and random 
component, calculated at a given hour, for different 
years, has a unique distribution that does not 
change from year to year. Therefore, synthetic 

values generated from a good solar model would 
preserve this characteristic distribution.  

As per the hypothesis derived, trend and random 
components of solar radiation are needed to determine 
the hourly synthetic solar radiation at any time period t. 
The trend component ∆𝐻𝑇  is an averaged value over the 
years with a 31-days moving window while random 
component ∆𝐻𝑆  are modeled and generated using 
probability distribution functions (CDFs). Several 
examples of CDFs of ∆𝐻𝑆 are shown in Figure 7. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 7. Cumulative distribution functions (CDFs) of ∆𝐻S values developed for (a) Jan 25, 11.00-12.00, (b) March 15, 16.00-

17.00, and (c) September 10, 18.00-19.00 measured at La Grange, USA. 
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4.1 Building of the Synthetic Solar Radiation Model 

Since the model need to store a large number of CDFs to 
generate the ∆𝐻𝑆  values, it is more computationally 
efficient to fit CDF data to a model and store the model 
coefficients. It was found that polynomial functions are 
appropriate to approximate the inverse relationships of 
the CDFs. Trials with the data for the selected locations 
showed that 3rd order polynomials, as given in (5), 
result in Pearson correlation coefficients greater than 
0.95 for all CDFs.  

∆𝐻𝑆(𝑥) = 𝑎0𝑡 + 𝑎1𝑡𝑥 + 𝑎2𝑡𝑥2 + 𝑎3𝑡𝑥3 (5) 

where 𝑥 ∈ [0 − 1]  is the cumulative probability, and 
∆𝐻𝑆 ∈ [∆𝐻𝑆,𝑚𝑖𝑛(𝑡),∆𝐻𝑆,𝑚𝑎𝑥,(𝑡)]  at hour t.  The 
coefficients 𝑎0𝑡 , … , 𝑎3𝑡  are found by least-square fitting 
[27]. Other approaches such as bootstrapping the error 
of data used for obtaining CDFs can be applied to 
generate random samples of∆𝐻𝑆  values. However, if 
measured data for a sufficiently long period of time (>10 
years) is available, with a 31 days window, there is 
enough data samples to generate a reliable CDF. 
Therefore, fitting a curve to represent a CDF is a more 
computationally efficient approach. Figure 8 
demonstrates the step-by-step procedure followed in 
building the model. The following steps explain in detail 

the procedure carried out in building the proposed model 
using the measured solar radiation.  
 
Step-1.1: From the historical data, calculate ∆𝐻𝐺  values, 
and then considering a 31-day sliding window, calculate 
the trend component (∆𝐻𝑇) for each hour of the year. 
Using the trend component, calculate the stochastic 
component (∆𝐻𝑆) values.    
 
Step-1.2: Segregate ∆𝐻𝑆 values corresponding to a given 
hour 𝑡  (within the 31-day sliding data window, of all 
years) into bins. Develop the CDFs 𝐹(∆𝐻𝑆)  for each 
hour.  
 
Step-1.3: The coefficient values of the 3rd order 
polynomials for each hour t is calculated using the least 
square estimation. 
 
After constructing the model, the estimated coefficient 
values are stored in an 8760×4 array. Note that all 
coefficients corresponding to nighttime hours are zero, 
indicating a 100% probability of having ∆𝐻𝑆 = 0  in 
these hours. However, these zero coefficients are also 
kept in the array for the convenience of programming. 

 

START

Input the measured Solar 
radiation  

Calculate the ∆𝐻T, ∆𝐻S values based on the 
measured solar data

Step-1.1: Calculate the ΔH values 

 Separate  ∆𝐻S values into bins and develop 
cumulative distribution functions (CDFs) for 

each hour

Step-1.2: Develop CDFs of ∆𝐻S

Estimate the coefficient values of 
polynomial functions representing CDFs

Step-1.3: Fit the CDFs using 
polynomial functions 

Solar Model Building 

Save the coefficient values of polynomial 
functions and ∆𝐻T values corresponding to 

each hour 

END

 
 

Fig. 8. Procedural flowchart for building the proposed synthetic solar radiation model. 
 

4. 2 Generation of Synthetic Solar Radiation Data 

To generate synthetic hourly solar radiation data, the 
coefficient values, synthetic data starting date/time and 

end date/time are given as inputs. Figure 9 illustrates the 
flowchart used in generating synthetic hourly global 
horizontal solar radiation. The following are the simple 
steps followed to complete the data generation.   
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Step-2.1: Recall the CDF coefficients ( 𝑎𝑖𝑡 ) 
corresponding to the current hour (t). Then draw a 
uniformly distributed random number in the range [0.0 -
1.0] and use it as the cumulative probability in (5) to 
obtain a value for the stochastic component of the first-
order difference in solar radiation (say ∆𝐻𝑆� (𝑡) ). The 
initial value of 𝐻𝐺(𝑡 − 1) in (4) is assumed be to zero 
due to the sunset hour. Therefore, the initial value of 
solar radiation 𝐻𝐺(𝑡) also will be zero. 
 
Step-2.2: The estimated  ∆𝐻𝑆� (𝑡) value is added to the 
trend component of solar radiation ∆𝐻𝑇(𝑡) to estimate 
the first-order difference in solar radiation ∆𝐻𝐺� (𝑡) as in 

(2).   
Step-2.3: To estimate the solar radiation of hour t, the 
generated first-order difference in solar radiation ∆𝐻𝐺� (𝑡) 
is added to the previous hour solar radiation 𝐻�(𝑡 − 1) as 
in (4). If the estimated solar radiation 𝐻𝐺� (𝑡) is out of the 
range [𝐻𝐺,𝑚𝑖𝑛 ,𝐻𝐺 ,𝑚𝑎𝑥 ], the procedure is repeated by 
randomly drawing another ∆𝐻𝑆� (𝑡)  until ∆𝐻𝐺� (𝑡)  will 
become within the limits. 𝐻𝐺,𝑚𝑖𝑛  and 𝐻𝐺 ,𝑚𝑎𝑥  represents 
the minimum and maximum solar radiation for hour 𝑡 
observed in the historical data (31-day moving window).  
Continue the procedure until solar radiation generation 
has been completed for the required duration. 

 

Draw a uniform random number and determine 
the ∆𝐻S value from CDF corresponding to 

current time, t

Step-2.1: ∆𝐻S value estimation 

for t=Start time:End time

t=t+1

YES

NO
Is value of 

t > End time

END

Add the ∆𝐻G value to the previous hour solar 
radiation and estimate current solar radiation

Step-2.3: Solar radiation estimation 

Synthetic Solar data generation

START

Input
• Coefficient values of function 

representing CDFs, ∆𝐻T 
values   

• Synthetic data starting date/
time 

• Synthetic data end date/time

First order differences are calculated by adding 
the trend and stochastic component Component 

for time t
∆𝐻G=∆𝐻T +∆𝐻S

Step-2.2: ∆𝐻G value estimation 

 
 

Fig. 9. Procedural flowchart for generating synthetic solar data. 
 

5. RESULTS AND DISCUSSIONS 

In this section, the simulated results are compared with 
measured solar radiation data and existing solar models 
in terms of comparison plots, autocorrelation, 
probability distributions, and mean values. All the 

simulated results were computed using the commercial 
software package MATLAB R2017a [28]. 

5.1 Description of Models used for Comparison 

There are many stochastic solar models developed in the 
past that are capable of generating synthetic solar 
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dataset. Among many of those, the models proposed in 
[7], [9] account for the autocorrelation between hourly 
solar radiation in the modeling of solar radiation through 
a stochastic disaggregation procedure to convert daily 
solar radiation to hourly solar radiation. Additionally, 
the models have used clear sky indices as a primary 
factor to develop the model and average-decomposition 
procedures are utilized to estimate the hourly clearness 
index from daily and/or monthly clearness index [6], [7]. 
To compare the performance of models which primarily 
use k-values and decomposition procedures to build 
synthetic solar irradiance generators with the proposed 
approach, the authors found these models are 
representative. Moreover, these models have been 
validated using the solar radiation data collected from 
Europe, the USA and Canadian cities [8], [9]. The 
proposed model has also used the development/testing 
of the model utilizing the measured solar data collected 
from the USA and Canada. For the convenience of 
representation, these models are represented as SHSRG 
[9] and SISIM [7] models in the future sections. The 
results associated with these models are used to compare 
the efficiency of the proposed model. 

5.2 Training the Model and Generation of Synthetic 
Data 

Figure 10 illustrates a time series plot of a part (three 
years) of the long-term measured hourly solar radiation 
data used for building the model (plotted in blue) 
followed by simulated hourly solar radiation data using 
the developed model (plotted in orange). It can be 
observed from Figure 10 that the designed model is able 
to maintain the general trend of actual data over the time 
period of one year. Since the proposed model is not 
meant to predict the solar radiation at a given hour on a 
given day, it is highly important to compare the main 
descriptive parameters such as autocorrelation, 
probability distributions, and average values of the 
simulated and actual solar radiation [29]. Also, it is 

important to investigate whether the model captures 
diurnal and seasonal variation on average. 

5.3 Autocorrelation and Partial Autocorrelation of 
Hourly Solar Radiation Time Series 

There is a strong correlation between the consecutive 
hourly solar radiation values. The autocorrelation and 
partial correlation functions of the measured solar data 
shown in Figures 11 and 12 underlines this fact. Both 
SHSRG [9] and SISIM [7] solar radiation models 
consider the correlation between clearness indices of 
consecutive days and hours in generating the random 
solar radiation values. Additionally, the models try to 
preserve the time correlation by considering previous 
hour solar irradiance values while generating the 
current hour irradiance values. Based on this character, 
it is expected that these models can preserve the time 
correlation of natural time series of measured solar 
radiation. However, the generated solar radiation data 
from SHSRG and SISIM models shows a lower 
correlation compared to the correlation seen in the 
measured radiation at all lags for both locations shown 
in the plots.   

On the other hand, the autocorrelation and partial 
correlation functions of the simulated data from the 
proposed model are much more similar to those of the 
measured solar data. This is because, in the proposed 
model, the current hour solar radiation is calculated as 
the previous time-step solar radiation 𝐻�(𝑡 − 1) plus the 
difference ∆𝐻𝐺� (𝑡). Hence, each hour solar radiation is 
calculated considering a sequence of past solar 
radiations values. Therefore, the model automatically 
incorporates the relationship of current hour solar 
radiation value to all past values in the day. This is 
inherent in the model and contribute to preserve the 
auto-correlation property for several time-lags. These 
comparisons underline the fact that the proposed solar 
radiation model better preserves the time correlation 
properties and performs better than SISIM/SHSRM 
models in this aspect. 

 

Training
Generated 

Values

 
Fig. 10. Training and generated values of solar radiation using the proposed solar model for La Grange, USA. 
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(a) 

 

 
(b) 

 
Fig. 11. Comparison of autocorrelation of measured hourly GHI values and generated hourly GHI values using the 

proposed model, SISIM, and SHSRM for (a) La Grange, USA and (b) Division 23, Manitoba, Canada. 
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(b) 

 
Fig. 12. Comparison of partial autocorrelation of measured hourly GHI values and generated hourly GHI values using 

the proposed model, SISIM, and SHSRM for (a) La Grange, USA and (b) Division 23, Manitoba, Canada. 
 

5.4 Probability Distributions 

It is expected that the annual probability distributions of 
∆𝐻𝐺  values computed from synthetic solar radiation 
values from a good model also demonstrate the same 
distribution that was found from the measured data 
illustrated in Figure 2. Figure 13 compares the 
distributions of ∆𝐻𝐺  values obtained from the solar 
radiation measurements with those obtained from the 
synthetic data generated using the proposed model, 
SISIM model, and SHSRM model, for four different 
locations at four different time periods. It can be seen 

from Figure 13 that the distributions of ∆𝐻𝐺  values 
obtained SISIM and SHSRM models significantly differ 
from the ∆𝐻𝐺  distributions of the actual solar radiation 
data. As expected, the probability distribution functions 
of ∆𝐻𝐺  are similar for the actual and synthetic data 
generated from the proposed model, because the 
proposed model for hourly global horizontal radiation 
was developed based on the probability distribution 
functions of the first-order differences of the historical 
hourly radiation measurements. 
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(c) 

 

 
(d) 

 
Fig. 13. Comparison of the probability distributions of ∆𝐻G obtained from the solar radiation models (SHSRM and 
SISIM) with those of actual data for the periods (a) 10.00-11.00 at Division 23, Manitoba, Canada, (b) 15.00-16.00 at 

Division 21, Manitoba, Canada, (c) 11.00-12.00 at Leavenworth, USA, and (d) 15.00-16.00 La Grange, USA. 
 

The Euclidean distance between two ∆𝐻𝐺  
probability distributions can be used to quantify the 
similarity of distributions. Euclidean distance between 
two distributions can be defined as shown in (6). 

𝑑(𝑥,𝑦) = ��(𝑥𝑙 − 𝑦𝑙)2
𝑃

𝑙=1

 (6) 

where, 𝑑  represents the Euclidean distance (ED), 𝑥𝑙  
indicates the probability values corresponding to the  
actual ∆𝐻𝐺  distribution, 𝑦𝑙  are probability values 
corresponding to the simulated ∆𝐻𝐺  distribution values, 
and 𝑃 indicates the total number of ∆𝐻𝐺  points in the x-
axis. The lower the ED, higher the similarity between 
two distributions. 

Table 2 shows the Euclidean distances between the 
∆𝐻𝐺  distributions obtained from the measured solar 
radiation and the synthetic data generated using the 
proposed, SISIM, and SHSRM models. Table 2 shows 
the similarity values of hourly probability distributions 
and the average similarity for all time periods, for four 
different locations. The highest average ED value is seen 
for SISIM model. On the other hand, the proposed 
model has the lowest average ED value for all four 
locations. This verifies the ability of the proposed model 

to produce ∆𝐻𝐺  distributions which are more similar to 
those corresponding to the actual measured solar 
radiation data. 

5.5 Monthly Mean Daily Insolation and Monthly 
Mean Hourly Solar Radiation  

Comparisons of the simulated and actual solar radiation 
data obtained from the models described previously, and 
the proposed model is shown in Figures 14 and 15 for 
monthly mean daily solar energy calculated for four 
different locations. These averages are taken over 10 
years. It can be observed that all the models fairly 
capture the monthly mean.  Even though the proposed 
model is not characterized to explicitly capture the daily 
or hourly mean values like [7], [8], it is clear from the 
figure that simulated and measured hourly global 
horizontal radiation values are very close.  

Additionally, the comparisons of monthly mean 
hourly solar radiation between measured solar radiation, 
proposed model, SISIM and SHSRM calculated is 
shown in Figures 16 and 17. The values are shown for 
four different locations and four different seasons where 
the average is taken over 10 years. It can be seen from 
the figure that all models were able to preserve the 
hourly averages close to the measured solar data. 
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(a) 

 

 
(b) 

Fig. 14. Comparison of monthly mean daily insolation of measured solar radiation, the proposed, SISIM, and SHSRM 
models for (a) Leavenworth, USA and (b) La Grange, USA. 

 

 
(a) 

 

 
(b) 

 
Fig. 15. Comparison of monthly mean daily insolation of measured solar radiation, the proposed, SISIM, and SHSRM 

models for (a) Leavenworth, USA and (b) La Grange, USA. 
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Table 2. Euclidean distances between the ∆𝑯𝑮 distributions of the actual data and the calculated data (using the proposed, 
SISIM, and SHSRM models) for different locations. 

Time 
Period 

DM-23 DM-21 LW-W LG-G 

Proposed SISIM  SHSRM Proposed SISIM  SHSRM Proposed SISIM  SHSRM Proposed SISIM  SHSRM 

8 0.10 0.19 0.16 0.44 0.57 0.58 0.09 0.39 0.40 0.44 0.57 0.58 
9 0.06 0.14 0.16 0.11 0.49 0.41 0.07 0.66 0.40 0.11 0.49 0.41 

10 0.06 0.64 0.28 0.06 0.36 0.26 0.05 0.35 0.30 0.07 0.37 0.27 
11 0.07 0.78 0.30 0.08 0.55 0.19 0.10 0.57 0.28 0.08 0.56 0.22 
12 0.06 0.35 0.33 0.05 0.62 0.26 0.06 0.57 0.40 0.06 0.62 0.27 
13 0.10 0.29 0.11 0.05 0.77 0.49 0.09 0.42 0.20 0.06 0.77 0.49 
14 0.06 0.61 0.07 0.06 0.28 0.42 0.09 0.74 0.29 0.08 0.29 0.42 
15 0.11 0.43 0.25 0.10 0.30 0.35 0.06 0.90 0.30 0.12 0.32 0.35 
16 0.19 0.32 0.86 0.13 0.32 0.31 0.13 0.32 0.20 0.13 0.31 0.31 
17 0.16 0.53 0.61 0.15 0.32 0.33 0.07 0.57 0.18 0.15 0.31 0.33 
18 0.11 0.31 0.37 0.15 0.24 0.58 0.06 0.32 0.18 0.15 0.36 0.58 
19 0.11 0.57 0.31 0.09 0.48 0.13 0.09 0.46 0.17 0.07 0.27 0.13 
20 0.10 0.40 0.16 0.15 0.31 0.15 0.04 0.22 0.24 0.13 0.30 0.15 
21 0.11 0.20 0.06 0.00 0.00 0.33 0.01 0.04 0.22 0.00 0.00 0.33 
22 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average 
of all 
time 

periods 

0.09 0.38 0.28 0.11 0.37 0.32 0.07 0.43 0.25 0.11 0.37 0.32 

 
 

 
(a) 

 

 
(b) 

 
Fig. 16. Comparison of monthly mean hourly solar radiation of measured solar radiation, the proposed, SISIM, and 

SHSRM models for (a) Division 23, Manitoba, Canada and (b) Division 21, Manitoba, Canada. 
 
 

0

50

100

150

200

250

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
on

th
ly

 A
ve

ra
ge

 H
ou

rly
 S

ol
ar

 
Ra

dt
ia

tio
n 

(w
/m

2 )

Hour

Actual
Proposed
SISIM
SHSRM

0

100

200

300

400

500

600

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
on

th
ly

 A
ve

ra
ge

 H
ou

rly
 S

ol
ar

 
Ra

dt
ia

tio
n 

(w
/m

2 )

Hour

Actual
Proposed
SISIM
SHSRM

http://www.rericjournal.ait.ac.th/


Anand M.P., Rajapakse A., and Bagen B. / International Energy Journal 20 (2020) 181 – 200       

www.rericjournal.ait.ac.th  

197 

 
(a) 

 

 
(b) 

 
Fig. 17. Comparison of monthly mean hourly solar radiation of measured solar radiation, the proposed, SISIM, and 

SHSRM models for (a) Leavenworth, USA and (b) La Grange, USA. 
 
 
5.6 Testing the Generic Applicability of the Model 

The new model is proposed for generating synthetic 
solar radiation data for long-range simulations for a 
given location. The model parameters are obtained from 
the available measured data for the location considered. 
Since there is no normalization procedure involved in 
the proposed model, it is not expected to be a generic 
model that can cover very different geographical areas. 
This is evident from the samples of the cumulative 
probability distribution functions of ΔHs values for 
different locations for the same time intervals shown in 
the Figure 18. Authors considered the feasibility of 
developing a solar radiation model considering the first-
order differences of the hourly clearness index (Δk 
values), however, the natural variation for k-values over 
a day is obscured by the very high k values 
(occasionally exceeding 1.0) at the beginning and end of 

the daylight hours. The values of measured and 
extraterrestrial solar radiation are very close at very low 
solar altitude angles, and sometimes the measured global 
horizontal solar radiation is higher than the calculated 
extraterrestrial solar radiation due to cloud reflected 
radiation and possible measurement errors. This 
phenomenon usually contributes towards unusually high 
peaks in Δk variations at the beginning and the end of 
the daylight hours. 

Moreover, the physical interpretation of Δk values 
is not as straightforward as ΔH values. Therefore, the 
authors preferred to develop the model based on the 
absolute differences in solar radiation. However, further 
research may enable solving these modeling challenges 
and development of more generalizable models based on 
the concept of first-order differences of the clearness 
index. 

 

0

100

200

300

400

500

600

700

800

900

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M

on
th

ly
 A

ve
ra

ge
 H

ou
rly

 S
ol

ar
 

Ra
dt

ia
tio

n 
(w

/m
2 )

Hour

Actual
Proposed
SISIM
SHSRM

0

20

40

60

80

100

120

140

160

180

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
on

th
ly

 A
ve

ra
ge

 H
ou

rly
 S

ol
ar

 
Ra

dt
ia

tio
n 

(w
/m

2 )

Hour

Actual
Proposed
SISIM
SHSRM

http://www.rericjournal.ait.ac.th/


 Anand M.P., Rajapakse A., and Bagen B. / International Energy Journal 20 (2020) 181 – 200 

www.rericjournal.ait.ac.th 

198 

 
(a) 

 
(b) 

 
(c) 

Fig. 18. Comparison of ΔHs CDFs developed based on the measured solar radiation from four different locations (a) Jan 
30, 10.00-11.00, (b) April 23, 13.00-14.00 and (c) Sep 25, 10.00-11.00. 

 
6. CONCLUSION 

Analysis of historical hourly global horizontal solar 
radiation data revealed that the first-order differences of 
solar radiation calculated at a given hour has a 
characteristic distribution that does not tend to vary 
from year to year. A new long-term stochastic solar 
radiation generation model that utilizes this 
characteristic distribution function of the first-order 
differences of hourly solar radiation was proposed. It 
was shown that the first-order differences of solar 
radiation of a particular hour in year can be represented 
in terms of a trend component and a stochastic 
component characterized using a cumulative 
distribution function obtained from the historical data.  

As per the analysis presented in the paper using 
data for four distinct locations, synthetic solar radiation 
generated SISIM and SHSRM solar radiation models 
failed to accurately reproduce the distribution functions 
for the first-order differences of global horizontal solar 
radiation. In contrast, the proposed model closely 
reproduced the probability distributions of the first-
order differences, while outperforming the existing 
models. Although the generalizability of the developed 
model to different locations is limited, building the 
model from historical data for a given location is simple 
and straightforward, and useful for applications such as 
Monte Carlo simulations. 
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