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The deployment of Electronic Voltage Transformers (EVTs) within ultra-high 

voltage smart grids exceeding 110kV is progressively expanding, rendering their 

operational stability paramount for precisely acquiring voltage signals across 

power grids. This paper proposes a dual-stage metering error prediction model 

for EVTs, which integrates Variational Mode Decomposition (VMD) with a 

Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention 

Mechanism (CNN-BiGRU-AM). Initially, an optimization algorithm is applied to 

determine the optimal decomposition parameters in the variational mode. Non-

stationary and stochastic raw ratio error sequences are then decomposed into 

different modal components through VMD. Subsequently, each component is 

modeled with a predictive framework incorporating BiGRU and an Attention 

Mechanism to obtain error deviation data based on the first stage's predicted 

ratio error results. Next, highly correlated features with EVT metering errors are 

identified using a random forest algorithm to construct a feature set. These 

features, combined with the error deviation obtained from the first stage, are used 

as joint inputs to establish an error correction process (second stage), resulting in 

the final prediction value. Empirical analysis indicates that the proposed method 

improves prediction accuracy and stability. 
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1 1. INTRODUCTION 

Electronic voltage transformers (EVTs), crucial for 

measuring equipment in power systems, are extensively 

utilized in voltage measurements across transmission 

lines and substations, ensuring real-time monitoring and 

control of these systems. Their stability is critical to the 

grid's safe, reliable, and efficient functioning [1]-[4]. 

However, influenced by environmental temperature 

and humidity, electromagnetic fields, and equipment 

aging [5], performance deteriorates over time, affecting 

long-term stability and causing a decline in 

measurement accuracy. According to relevant standards, 

periodic calibration of the measuring instruments' 

accuracy is required [6]. Traditional verification is 

primarily conducted through offline checks [7], a 

relatively mature method. However, since offline testing 

requires planned power outages, it leads to low 

efficiency, high cost, and poor timeliness and is not 

conducive to batch testing. Consequently, some scholars 

 
*College of Electrical Engineering & New Energy, Three Gorges 

University, Hubei 443002, China; Provincial Engineering Research 

Center of Intelligent Energy Technology, Three Gorges University, 

Hubei 443002, China. 

 
#Hubei Technology Innovation Center for Smart Hydropower, Hubei, 

430000, China. 

 

^ China Yangtze Power Co., Ltd., Hubei 443002, China. 

 
1Corresponding author:  

Email: cuiup@ctgu.edu.cn  

 

have proposed connecting standard transformers to live 

circuits for online error evaluation of transformers 

without power shutdowns, as referenced in [8]. An 

online verification system for transformers was 

developed, using an SF6 cylinder capacitor as a standard 

capacitor voltage divider connected to operating lines. 

An electronic transformer verifier compares the output 

signals of the standard transformer and the tested device, 

obtaining the measurement ratio error of the EVT under 

operating conditions. Due to reduced verification costs, 

the calibration cycle has been significantly shortened. 
However, due to the high-voltage environment, it can 

only be performed in the short term. 

To address the challenges above, scholars have 

studied evaluation methods based on transformers 

without standards, focusing on error detection and risk 

warnings for measurement devices. For instance, 

references [9,10] employ equivalent circuit modeling, 

using parameters from transmission and distribution 

lines to model and solve the operational errors of 

transformers. While this method is theoretically feasible, 

accurately obtaining the specific parameters of operating 

equipment poses a significant challenge. The accuracy 

of these parameters directly impacts the evaluation 

results of the modeling, leading to low accuracy rates in 

engineering applications. 

In recent years, with the rapid development of 

information technology, evaluation methods centered on 

big data technology have gained widespread attention. 

Collecting operational data and environmental 

parameters of transformers and using data statistics or 
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modeling to extract associated information from the data, 

a preliminary evaluation of the transformers' 

measurement status has been achieved. For example, 

references [11], [12] use the short-term invariant 

characteristics of three-phase imbalance as constraints 

and apply principal component analysis to analyze the 

secondary output information of transformers. These 

studies achieve an online evaluation of error states by 

calculating statistical measures and their control 

thresholds. However, this method assumes that the 

output data of transformers follow a normal distribution, 

and it may fail when the fluctuations in the three-phase 

imbalance greatly exceed the operational errors of the 

transformers. Reference [13] improves upon this 

approach by employing "in-phase measurement 

consistency" among groups of voltage transformers. 

Using principal component analysis on the secondary 

output information of the same phase voltage 

transformer groups, it eliminates the impact of random 

fluctuations in the power system, thereby preventing the 

need to consider the distribution of the output signals. 

However, this method requires at least three groups of 

transformers on the same line, whereas many substations 

along the same line are equipped with only two groups. 

Although the principal component analysis method 

is effective, its stringent prerequisites limit its 

application scenarios. Additionally, since it evaluates 

statistical thresholds to determine the possibility of 

degradation, the evaluation results are binary ("yes" or 

"no"). They cannot reflect changes in transformers' most 

important measurement index—measurement accuracy 

(ratio error). 

Similarly, based on big data technology, references 

[14], [15] employ neural network modeling to build 

prediction models using historical data of transformers' 

operational ratio errors and environmental parameters. 

While neural network-based prediction models can 

directly forecast changes in the measurement accuracy 

of transformers at future times, the models' simplicity 

and tuning limitations lead to slow convergence and 

issues such as local optima, thereby affecting the 

prediction results. 

The rapid development of deep learning 

technologies in recent years has facilitated the 

application of advanced neural network models in 

engineering fields. These models, with adjustable 

topologies, fast parallel processing speeds, and strong 

adaptability, address the shortcomings of traditional 

neural network modeling. For instance, convolutional 

neural networks (CNNs) [16], recurrent neural networks 

(RNNs) [17], and attention mechanisms [18] are now 

widely used in natural language processing and time 

series prediction. They have also extended to the power 

industry and power equipment fields, such as wind 

power prediction [19], [20], photovoltaic output [21], 

[22], and electric load [23], demonstrating excellent 

performance. Some deep learning-based approaches also 

predict transformer measurement errors. For example, 

reference [24] uses the BiLSTM neural network to 

directly predict the measurement errors of voltage 

transformers, and reference [25] employs the gated 

recurrent unit (GRU) neural network to predict the ratio 

errors of voltage transformers. However, these 

approaches apply models directly and without 

considering the impact of actual operating environment 

characteristics on transformers. 

To address the shortcomings of the methods above, 

this paper proposes a prediction model based on 

variational mode decomposition (VMD) and a 

bidirectional GRU (BiGRU) structure with an attention 

mechanism. The northern goshawk optimization (NGO) 

algorithm is used to assist in selecting parameters for the 

VMD and neural network models to predict the ratio 

error of electronic voltage transformers. Additionally, an 

error correction model that considers environmental 

characteristic factors is proposed to enhance the stability 

of the model further. The main contributions are as 

follows: 

1) The complexity of input data affects the model's 

prediction results. Using VMD to decompose 

complex, non-stationary input data into simple 

components improves the model's generalization 

ability. 

2) Considering that the model's accuracy loss arises 

from the decomposition residual loss of VMD, the 

impact of measurement sequence fluctuations on the 

model, and the association between the transformers' 

operating environment and the equipment's 

measurement accuracy, this paper adopts a hybrid 

model that adds an error correction phase. 

In the first stage, the NGO finds the decomposition 

parameters that minimize the VMD decomposition loss, 

and the original data is decomposed. Neural network 

models based on BiGRU and attention mechanisms 

(BiGRU-AM) are constructed separately to obtain 

predicted ratio error data. In the second stage, the error 

sequence obtained from the first stage and the 

variational mode components and feature vectors 

affecting the transformer's operation are selected as 

input vectors to construct a transformer error prediction 

model based on the BiGRU-AM network. The model's 

prediction errors are obtained and finally converted into 

ratio error prediction results. The proposed method's 

effectiveness was validated through case analysis, 

demonstrating its ability to predict future measurement 

error changes for 0.2-level EVTs. 
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Fig. 1. EVT metering error prediction model. 

 

2.  ANALYSIS OF TRANSFORMER RATIO 

ERROR 

The EVT transforms primary voltage signals from the 

power grid to digital signals for secondary systems. 

Typically, there's a discrepancy between the actual 

voltage and EVT's secondary measured data, with this 

metering error usually expressed as the ratio error [26], 

[27]: 

 
(1) 

In Equation (1), f denotes the ratio error; Kr is the 

EVT's transformation ratio; U1 is the actual value of the 

primary voltage signal, and U2 is the secondary side's 

measured voltage. Since EVTs are calibrated pre-

installation, the ratio error f is nearly zero. EVTs, 

composed of highly integrated electronic units, face 

inevitable challenges in industrial environments, 

including environmental contamination, temperature and 

humidity fluctuations, electric and magnetic field 

effects, and vibration changes. These elements 

contribute to a gradual drift in measurement error. The 

physical network model depicting the increase in EVT 

ratio error due to these factors is as follows: 

 (2) 

Here, m denotes multiplicative noise; vs additive noise, 

and fs represents EVT's inherent measurement error 

under abnormal conditions. 

Considering the complex temporal signals in 

transformer measurement data and assessing factors 

affecting the transformer's gradual error, the historical 

ratio error is represented as Y, 1 2( , , , ) T

TY Y Y= RY
. 

Environmental factors impacting measurement stability 

at any time are input variables; the matrix at T historical 

moments is thus denoted as. 
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(3) 

Here, Xi,j is the value of the ith influencing factor at 

time j. Using historical ratio error Y, the model predicts 

the EVT ratio error at the next moment with multiple 

variables. Defined by the function mapping F, the next 

moment's predicted ratio error, YT+1, is expressed as: 

1 1 2 3 1 2 3( , , , , , , , )T T TY F Y Y Y Y+ = X X X X  (4) 

3. PROCESSING OF DATA 

3.1 Variational Mode Decomposition 

VMD is an adaptive, non-recursive signal processing 

method [28], utilizing Gaussian smoothing and Hilbert 

transformation for decomposing and extracting sequence 

components. VMD optimizes each mode's central 

frequency and bandwidth by calculating the variational 

model's optimal solution, simplifying complex time 

series signal decomposition. The core steps include: 

The Hilbert transform calculates the unilateral 

spectrum of modes, aligning the spectrum to the base 

frequency through exponent estimation. A constraint 

equation is formed to minimize the total bandwidths of 

modal components: 

2 1

1

100%rK U U
f

U

−
= 

r2 1 / s smU K v fU = + +
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s.t. ( )k
k

u f t=
 

(6) 

Here, {uk}={u1,u2 ,…,uN} represents the N 

decomposed modal components, {k}={1,2,…, N} 

are the central frequencies of each modal component, 

f(t) is the original signal function, (t) is the Dirac delta 

function. 

To address the constraint problem, introducing a 

penalty factor and Lagrange multipliers transforms the 

constraint equation into an unconstrained one. This 

ensures the variational model's nonlinearity and thus 

enables precise signal decomposition, as shown in 

Equation (7). 
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(7) 

Here,  is the Lagrange multiplier, and a is the 

penalty factor.  

Finally, the modal components and central 

frequencies are iteratively updated using the Alternating 

Direction Method of the Multipliers algorithm: 
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(9) 

3.2 Optimization and Reconstruction 

The effectiveness of the VMD depends on the choice of 

decomposition parameters, primarily related to K and a. 

The number of decompositions, K, determines the 

number of modal separations, while the penalty factor a 

affects the decomposition process. Thus, the VMD 

algorithm can be regarded as a function fv( ) related to 

(K, a), transforming it into a two-dimensional extremum 

optimization problem. The decomposition and 

reconstruction process is then represented as 

{ ( ) | 1,2,..., ; 1,2,..., } ( ( ), , ) k vu t k K t T f f t K a= = =
. 

The reconstructed signal f'(t) can be expressed as 

1
( ) ( )

K

kk
f t u t

=
=  . The standard for evaluating the 

decomposition loss between the reconstructed signal and 

the original signal is usually the mean absolute error L, 

which is formulated as: 

1

1
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T

t
L f t f t

T



=
= −

 
(10) 

To mitigate modal mixing and ensure signal 

reconstruction accuracy, an optimization algorithm is 

used to tune VMD parameters iteratively. The 

optimization is set to two dimensions. By inputting the 

measured ratio error sequence and setting parameters 

such as the maximum number of iterations and the initial 

population, the fitness function is calculated, retaining 

the globally optimal individuals and their fitness. To 

achieve effective decomposition and improve the 

predictive accuracy of subsequent neural network 

models, the minimum envelope entropy is selected as 

the fitness function for evaluation to identify the optimal 

solution. 

 

(11) 

To validate the effectiveness of the decomposition 

via the optimization algorithm, the system's default 

VMD decomposition values are compared to the NGO 

[29] meta-heuristic algorithm. The number of 

decompositions and penalty factors are rounded to the 

nearest integer, and the population and iteration count 

are uniformly set to 25 and 100, respectively. The results 

are presented in Table 1. 

 
Table 1. Comparison of VMD decomposition results. 

Model 
Decomposition 

Fitness 
K a 

VMD 5 1000 0.08466 

NGO-VMD  8 4128 0.06448 

 

Experimental results show that NGO-optimized 

VMD effectively minimizes signal loss in 

decomposition, adaptively determines optimal 

parameters, and guarantees accuracy, overcoming the 

randomness and ambiguity of empirical settings. Figure 

2 illustrates the initial ratio error sequence segmentation 

into intrinsic mode functions (IMFs), each showing 

distinct change perns. The primary component, IMF1, 

displays a lower frequency and higher amplitude, 

indicating the overall trend of the ratio error sequence. 

This research separates non-stationary stochastic time 

series signals into stable, independent component 

sequences, enhancing model accuracy by finely 

modeling the signal's trends. 

Figure 3 illustrates the primary component IMF1, 

representing the overall trend, and compares it with the 

reconstructed signal and decomposition residuals. We 

can see that the original sequence is divided into two 

main parts. The grey columnar fill represents the 

"Reconstructed Signal," which results from all intrinsic 

mode functions (IMFs) overlaid, with its magnitude 

detailed on the left Y-axis. The red columnar fill denotes 

the "Residual," which is the remaining irregular part that 

cannot be decomposed, with its magnitude shown on the 

right Y-axis.  

Figures 2 and 3 reveal that IMF1 aligns with the 

overall trend. The emergence of residuals post-

reconstruction is deemed inevitable; the magnitude of 

residuals is related to the precision of the decomposition. 

 
5
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Fig. 2. VMD decomposition. 
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Fig. 3. Decomposition, reconstruction, and residuals post-reconstruction. 

 

3.3 NGO-BiGRU-AM Model 

The GRU demonstrates notable advancements in 

sequence modeling through the amalgamation of the 

long short-term memory (LSTM) neural network's 

forget and input gates into a unified update gate. This 

integration facilitates efficient information flow 
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management, parameter reduction, overfitting 

mitigation, and expedited convergence. Furthermore, 

the BiGRU surpasses traditional GRU limitations by 

assimilating information bidirectionally, thereby 

capturing both antecedent and subsequent contexts 

within each iteration. This bidirectional processing 

amalgamates past and future insights, ensuring the 

maximal retention of pivotal features. The operational 

dynamics of this mechanism are depicted below, with 

the update and reset gates symbolized by zt and rt, 

respectively. Here, xt signifies the input, ht denotes the 

hidden state propagated in reverse, and  

encapsulates the candidate's hidden state. The 

corresponding mathematical formulations are 

delineated as follows: 

 

(12) 

Here,  is the sigmoid function, Wz, Wr, Wh, Uz, Ur, 

and Uh are the weight matrices respectively; bz, br, bh are 

the corresponding bias vectors. 

By dynamically concentrating on varying segments 

within the sequence, the attention mechanism enhances 

the model's capability to comprehend mid-to-long-term 

dependencies, consequently bolstering predictive 

stability. 
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Fig. 6. Attention mechanism. 

 

The methodology entails initially encoding the input 

sequence to procure the query vector q, followed by the 

allocation of weights based on similarity: 

( , ) tanh( )T

i is y q V Wy Uq= +
 

(13) 

Here, V, W, and U are designated as matrices pending 

parameter learning. Utilization of the Softmax function 

for normalization facilitates the derivation of the weight 

ai for each group of input vectors: 
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Subsequently, the computed weighted sum is based 

on the weights and their corresponding value vectors: 

1

n

i
i
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(15) 

To improve the model's predictive accuracy, this 

paper introduces a VMD-CNN-BiGRU-AM voltage 

transformer metering prediction model, utilizing error 

correction as depicted in Figure 1. Initially, different 

components of a VMD-CNN-BiGRU-AM prediction 

model are reconstructed. The algorithm calculates the 

optimal (K,a) solution, partitioning the transformer's 

non-stationary random ratio error sequence into stable 

modal components IMF1, IMF2, IMF3, …, IMFN. 
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Separate CNN-BiGRU-AM algorithm models are 

constructed for each intrinsic modal component, 

yielding predictions IMF′1, IMF′2, IMF′3,…, IMF′N. These 

component model predictions are then aggregated to 

forecast the ratio error sequence. 

Considering the accuracy losses due to VMD 

decomposition, non-stationary random measurement 

sequence fluctuations, and the transformer's operating 

environment, the second stage involves error correction. 

A highly correlated set of features, intrinsic modal 

components, and the first-stage neural network error 

residuals are used as inputs. The CNN-BiGRU-AM 

model establishes nonlinear relationships among these 

inputs. Finally, the final predicted ratio error is obtained. 

4. NUMERICAL EXAMPLE ANALYSIS 

All experiments in this paper are based on Matlab 2023a 

and focus on EVTs at a 110kV substation in Henan. 

Time series data on ratio error and characteristics like 

magnetic field, temperature, humidity, and electric field 

phase were collected hourly. A total of 2000 datasets 

(Figure 8) were compiled, and divided into training, 

testing, and validation sets in proportions of 0.8, 0.1, and 

0.1, respectively.  

Evaluation criteria such as Root Mean Square Error 

(XRMSE), Mean Absolute Error (XMAE), and the 

coefficient of determination R assess model accuracy. 
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(18) 

Lower values of XRMSE and XMAE, and R2 closer to 

1 indicate higher model prediction accuracy. 
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Fig. 7. Main prediction model. 
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Fig. 8. Ratio error. 
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Fig. 9. Predicted and true values after VMD decomposition. 

 

4.1 VMD Sequence Decomposition 

Figure 9 shows the VMD decomposition of the test set, 

with true values indicated by a blue line and predictions 

by a red line. The figure demonstrates that, following 

algorithm-based decomposition, the predictions closely 

follow the exact values. Models for each decomposed 

sequence were established to validate the VMD 

decomposition's efficacy further. A comparison was 

made by randomly selecting 100 consecutive points, and 

contrasting it with a model directly using the original 

ratio error sequence. 

Table 2 and Figure 9 clearly show that the 

prediction results after VMD decomposition are 

significantly better than the direct prediction results 

without decomposition. The predicted values closely 

follow the true values. Specifically, the RMSE 

decreased by 47.51%, the MAE decreased by 20.1%, 

and the coefficient of determination (R²) increased by 

62.9%. This indicates that using VMD to decompose the 

ratio error sequence into different simple components 

significantly reduces the learning difficulty of the 

model, thereby improving the accuracy of the prediction. 

Moreover, the decomposition method increases the 

sample size and reduces the risk of model overfitting. 

 
Table 2. Comparison of VMD Experiments 

Model 
Evaluation 

XRMSE XMAE R2 

BiGRU 4.6110-3 2.09 10-3 0.5351 

VMD- BiGRU 2.4210-3 1.6710-3 0.8719 

 

4.2 Comparative Experiment  

To verify the performance of the hybrid model proposed 

in this paper, 100 randomly selected sequential data 

points were used to compare the VMD-CNN-BiGRU 

and VMD-CNN-BiGRU-AM models in predicting the 

ratio error data after VMD decomposition. Results in 

Figure 10(a) and Table 3 show that compared to VMD-

BiGRU, CNN-BiGRU and CNN-BiGRU-AM models 

reduced RMSE by 14.05% and 17.77%, and MAE by 

9.58% and 14.37%, while improving R² by 3.83% and 

4.75%, respectively. This improvement is primarily 

attributed to the convolution layer's transformation of 

lengthy sequence data from a low to high-dimensional 

space, optimizing the sequential data processing. 

Additionally, the attention mechanism dynamically 

weights important sequences, reducing model forgetting 

by enhancing medium and long-term dependencies, 

which improves prediction stability.  

4.3 Error Correction Experiment and Analysis 

Considering the primary causes of error, which include 

the residuals from VMD decomposition and the inherent 

model influences, it is evident from the analysis above 

that the VMD-CNN-BiGRU-AM neural network 

exhibits the most minor error. Based on this model, an 

error correction experiment was conducted. To quantify 

the effectiveness of error correction and high-correlation 
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feature sets, the following model construction and 

validation methods have been employed in comparative 

experiments: 

1) The model without error correction (VMD-

CNN-BiGRU-AM). 2) Error correction using only the 

modal components derived from the decomposition as 

additional inputs, denoted as S1. 3) Error correction 

using both modal components and high-correlation 

feature sets as inputs to the model, denoted as S2. 

Experiments and analyses were conducted using the 

above three models. 

4.3.1 High-correlation feature 

The operational stability of transformers is influenced by 

the long-term effects of their operating environment. To 

identify the strongly correlated and redundant features in 

the collected substation environment data, this paper 

employs a Random Forest [30] algorithm to recognize 

the critical feature set that is highly correlated with the 

dependent variable. As shown in Figure 10(b), 

temperature and humidity are identified as strongly 

correlated feature parameters for ratio error prediction. 

Based on the results of the Random Forest, we excluded 

weakly correlated features and selected temperature 

(3.587) and humidity (2.004) to form the feature set used 

as inputs for the correction model. 

4.3.2 Experiment and analysis 

In Figure 11(a), the MAE comparison of three models is 

presented, where the blue, red, and orange lines 

represent the absolute values of error amplitudes 

between model predictions and true values, displayed on 

the y-axis. Models S1 and S2 exhibit lower single-point 

relative errors over different time intervals, indicating 

that, after two stages of correction, they can more 

accurately capture contextual correlations and show 

superior performance. Figure 11(b) compares the 

predictions of the three models with the true values, 

showing that the predictions of S1 and S2 are closer to 

the true values. When faced with abnormal fluctuations 

in measurement errors, these models can quickly 

identify and respond to such changes. The figure shows 

that the S2 model, which incorporates highly correlated 

feature sets, demonstrates the highest correlation with 

true values. This improvement is attributed to the S2 

model's in-depth exploration of the nonlinear 

relationships among features, ratios, and losses, and the 

hidden information they contain, thereby accurately 

reflecting EVT measurement errors and enhancing 

prediction precision. 

The deployment of the S1 and S2 models has 

markedly enhanced predictive accuracy. This is 

evidenced by a 15.08% decrease in RMSE, a 

corresponding 15% reduction in MAE, and a 2.63% 

enhancement in R² for the S1 model. Similarly, the S2 

model demonstrated a 19.1% reduction in RMSE, a 17% 

decrease in MAE, and a 3.31% increase in R². These 

advancements not only elucidate the models' capability 

to minimize error magnitudes but also to bolster 

correlation significantly, thereby affirming their 

enhanced predictive prowess through the assimilation of 

sophisticated error correction methodologies and 

intricate feature sets. 
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(a). Ablation Experiments. 

Temperature Humidity Vibration Magnetic 

Field

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V
al

u
e

2.004

3.587

1.183 1.215

 
(b). Feature Selection. 

Fig. 10. Ablation experiments and feature selection. 

 

 

Table 3. Comparison of ablation experiments. 

Model 
Evaluation 

XRMSE XMAE R2 

VMD-CNN-BiGRU 2.0810-3 1.51 10-3 0.9053 

VMD-CNN-BiGRU-AM 1.9910-3 1.4310-3 0.9133 
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(b). Comparison of prediction error. 

Fig. 11. Ablation experiments and feature selection 

 

 

Table 4. Comparison of prediction experiments. 

Model 
Evaluation 

XRMSE XMAE R2 

VMD-CNN-BiGRU-AM-S1 1.6910-3 1.22 10-3 0.9372 

VMD-CNN-BiGRU-AM-S2 1.6110-3 1.1610-3 0.9434 

 

5.  CONCLUSION 

This paper establishes a prediction model utilizing 

VMD-CNN-BiGRU-AM with a two-stage correction 

method. Key conclusions include: 

1) VMD usage enhances data predictability. 

Decomposing sequences into varied sub-sequences 

via optimized VMD simplifies learning and 

ensures reconstruction accuracy. 

2) Integrating bidirectional and attention mechanisms, 

expanding the data volume, and focusing on key 

data significantly improves the accuracy of the 

model. 

3) By employing a random forest to construct the 

feature set and incorporating an error correction 

stage, the model's inherent errors are significantly 

minimized, thereby further enhancing the model's 

predictive stability. 
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