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Accurate forecasting of building power demand and energy consumption is 

essential for optimizing energy usage, improving efficiency, reducing costs, and 

ensuring sustainability. However, this prediction process is challenging due to 

factors such as variable occupancy, unpredictable occupant behavior, seasonal 

weather changes, data limitations, complex system interactions, and other 

external influences. This study develops a data-driven model based on historical 

electrical power data to predict the power demand and energy consumption of a 

student hostel. The historical data, recorded at five-minute intervals, was 

collected by logging the main incoming power supply using a power quality 

analyzer at the main switch block. Based on the power profile, the model was 

developed for four distinct time frames: falling, baseload, rising, and peak-load 

periods. Two key independent variables - minutes past midnight and type of day 

(weekday or weekend)—were considered as primary influences on power demand. 

Unlike previous models, this study employed MATLAB programming to optimize 

correlation modeling using the statistical approach of the power-law function. 

Results indicate that eighth- to ninth-degree polynomial fits provide the best 

power forecasting, achieving R² values as high as 0.9989. However, the 

prediction of power demand and energy consumption during peak-load periods on 

weekends was more complex, with a power correlation R² value of just 0.6100. 

Model accuracy assessments across different time frames and days showed that 

the developed model could predict power demand and energy consumption with a 

deviation of less than 5% compared to actual measurements. These findings 

demonstrate that a predictive model using only two independent variables, a 

power-law function, and polynomial fits up to the eighth and ninth degrees can 

effectively forecast power demand and energy consumption of the hostel. This 

model is expected to be valuable for future demand response (DR) programs, 

supporting the analysis of DR initiatives and the optimization of energy efficiency 

strategies. Future research could explore the integration of additional significant 

parameters alongside machine learning techniques to further enhance model 

accuracy. Factors such as outdoor air temperature, examination days, and a more 

detailed occupancy rate could be investigated and incorporated into future model 

development. This would allow for a more comprehensive evaluation of various 

energy consumption scenarios and their potential impact. 
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1 1. INTRODUCTION 

Records indicate that the energy sector accounts for 

nearly 75% of global greenhouse gas (GHG) emissions 

[1]. One of the primary reasons for this is the significant 
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reliance on non-renewable sources for electricity 

generation. In terms of electricity consumption, 

buildings rank as the third-largest energy consumers 

worldwide and are responsible for approximately a 

quarter of global CO₂ emissions [2]. In the context of 

Malaysia, data from the Energy Commission shows that 

in 2020, 81.7% of electricity generation depended on 

two non-renewable sources: coal and gas [3]. 

Meanwhile, buildings in Malaysia account for 14.3% of 

total energy consumption, with 53% of electrical energy 

used by the residential and commercial sectors [4]. Since 

electricity generation from non-renewable sources 

produces harmful greenhouse gas emissions, inefficient 

energy consumption in buildings significantly increases 

electricity demand from power plants, thereby 

contributing to higher GHG emissions. 
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According to records, the Grid Emission Factor of 

Peninsular Malaysia in 2021 indicates that the 

consumption of 1 kWh of electricity contributed 758 g 

of CO₂ emissions to the environment [5]. Efficient 

energy use in buildings can help reduce dependency on 

non-renewable sources, thereby extending the lifespan 

of these resources. Indirectly, this ensures the 

continuous availability of electricity at an affordable 

cost while fostering a culture of energy conservation and 

efficiency. Additionally, it supports environmental 

protection by mitigating the severe impacts of climate 

change, ultimately promoting long-term sustainability. 

In this regard, energy-efficient buildings, supported 

by an effective operational strategy, play a vital role in 

achieving this sustainability target [4]. However, to 

develop an effective operational strategy, the energy 

consumption characteristics of the building must first be 

clearly understood. Therefore, how building energy 

consumption characteristics can be effectively analyzed 

and modeled for different types of buildings is becoming 

increasingly significant and is the main research focus of 

this study. This understanding can lay the foundation for 

future research aimed at developing an optimal building 

operation strategy. 

Previous studies have identified several factors that 

determine energy consumption characteristics and how 

energy is used. Occupant behavior is one of the key 

factors influencing energy usage in buildings [6]. 

Different types of buildings (e.g., office buildings, 

commercial buildings, residential apartment buildings, 

etc.) have distinct energy consumption characteristics. 

For example, commercial building energy consumption 

patterns generally follow daily activities and weather 

conditions [7]. Meanwhile, in residential buildings, 

energy consumption patterns largely depend on 

occupant behavior and the number of hours spent inside 

the building. As a result, Sepehr et al. [8] and Wei and 

Bai [9] emphasized that studying energy consumption 

should consider different time scales or short-term 

periods for accurate predictions. In summary, 

understanding energy consumption characteristics is 

essential for improving decision-making aimed at 

reducing energy use and CO₂ emissions. This knowledge 

helps assess various building operation strategies and 

enhances demand and supply management. To date, 

limited studies have explored energy consumption 

characteristics in residential and non-residential 

buildings [7]-[15]. 

Choi et al. [10] conducted a series of case studies 

and resident surveys to analyze energy consumption in 

high-rise apartment buildings based on building use and 

shape. Under the building use classification, they found 

that residents of mixed-use apartments demonstrated 

greater engagement in active heating management and 

frequently adjusted their indoor activities. However, 

they consumed more electricity, especially during the 

summer, compared to those living in standard residential 

apartments, leading to higher CO₂ emissions in mixed-

use apartments. Under the building shape classification, 

they found that for common areas, tower-type buildings 

consumed 48% more energy but only 90% of the gas 

consumption compared to plate-type buildings. 

Khoshbakht et al. [12] characterized energy use 

and applied stochastic frontier analysis as a 

benchmarking technique for higher education buildings. 

In terms of activity type, they found that buildings 

primarily used for research and academic offices had the 

highest and lowest energy intensity benchmarks at 216 

and 137 kWh/m²/year, respectively. In terms of 

discipline, Science and Health buildings had the highest 

and lowest energy intensity benchmarks at 164 and 136 

kWh/m²/year, respectively. 

Meanwhile, energy use forecasting is crucial for 

effective building energy planning, management, and 

optimization [16]-[18]. In the field of data-driven energy 

consumption prediction modeling, a previous study [15] 

reviewed that 19% of these models focused on 

residential buildings, while 57%, 12%, 15%, 4%,  and 

12% were developed for predicting hourly, sub-hourly, 

daily, monthly, and yearly energy consumption, 

respectively. 

Sepehr et al. [8] considered residential house type 

and individual appliance load profiles in their daily load 

profile modeling. Zhu et al. [7] developed a prediction 

model to quantify daily building load profiles using 

historical energy consumption data from metering 

systems, along with environmental and holiday 

information. They claimed that their prediction model 

could detect anomalies in energy consumption by 

comparing predicted statistics with observed data. 

Castillo et al. [19] utilized the Monte Carlo 

technique to create actual daily averaged demand 

profiles. They performed 100 simulations to model the 

daily demand profile of each appliance group in the 

building. Since each profile was generated based on 

probabilistic and random variables, the approach 

allowed for multiple possible scenarios for each day, 

making the model more reflective of real user behavior. 

Finally, daily and monthly energy consumption were 

calculated based on each daily demand profile. Recently, 

Ghenai et al. [20] forecasted short-term building 

electrical load using an adaptive neuro-fuzzy inference 

system. The developed model was considered highly 

accurate in predicting building electrical load, with R-

values ranging from 0.968 to 0.980 for all forecasting 

time horizons. More recently, Tsala et al. [21] used 

weather forecast meteorological models for building 

energy simulations. This study focused on the impact of 

insulation materials on energy efficiency and 

environmental sustainability in a multifamily building, 

extending its findings to anticipate future challenges in 

2050 and offering practical insights for building 

performance and climate adaptation. 

In general, understanding building energy 

consumption profiles, especially for buildings classified 

as significant energy users, is crucial for accurate energy 

consumption prediction. Additionally, understanding 

energy profiles is essential for identifying energy-saving 

measures and setting actionable targets that can be 

planned and implemented to improve building energy 

efficiency. Indirectly, this promotes a culture of energy 

conservation and efficiency while contributing to 

environmental sustainability. Aligning with global and 

national goals, such as achieving net-zero carbon 
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emissions by 2050, is a key priority in this context. 

Table 1 summarizes previous studies related to building 

energy forecasting. 

 

 
Table 1. Summary of previous studies related to building energy forecasting. 

Author 
Type of 

Building 

Objective of 

Study 

Technique of 

Modeling 
Advantages Disadvantages 

Sepehr et al.  

[8] 

Occupancy-

based 

housing 

To model and 

analyze residential 

electricity 

consumption using 

a bottom-up 

approach to better 

understand 

consumer behavior 

and improve 

energy 

management 

Bottom-Up 

Modeling 

Method 

• Captures consumer 

behavior by models 

individual appliance 

usage and consumer 

behavioral patterns, 

providing a more 

detailed consumption 

profile. 

• Integrates data between 

energy bills and 

household surveys lead 

to good accuracy of the 

model. 

• Requires details 

comprehensive and 

data on appliance 

usage, consumer 

behavior, and 

environmental 

conditions, which 

may not always be 

available. 

• Simulating a large 

number of 

households at high 

resolution demand 

significant 

computational 

resources 

Khoshbakht 

et al. [12] 

Academic 

buildings 

except 

student 

hostel 

To understand 

energy use 

characteristics of 

different types of 

buildings in higher 

education 

campuses and to 

establish an energy 

benchmark system 

Stochastic 

Frontier 

Analysis (SFA) 

• More accurate efficiency 

estimation by separating 

random errors from 

actual inefficiencies 

• Suitable for analyzing 

many buildings for 

benchmarking analysis. 

• If there are no 

measurement errors, 

some inefficiencies 

may be wrongly 

classified as 

statistical errors. 

• SFA does not 

determine efficiency 

based on the 

performance of just 

one building. 

Zhu et al [7] Commercial 

buildings 

To develop a data-

driven energy 

management 

framework using 

smart metering data 

to analyze building 

load profiles, detect 

anomalies, and 

improve energy 

efficiency in 

commercial 

buildings 

Data-Driven 

Modeling with 

Machine 

Learning 

• Leverages real-time 

energy consumption data 

for accurate analysis. 

• Detects Anomalies – 

Identifies abnormal 

energy consumption 

patterns for better facility 

management. 

• Uses machine learning to 

forecast future building 

energy usage. 

• Machine learning 

models require 

significant processing 

power. 

• Model performance 

depends on selecting 

the right algorithms 

and parameters, thus 

requires expert tuning 

Castillo et 

al. [19] 

Academic 

buildings 

except 

student 

hostel 

To model and 

analyze energy 

consumption in a 

university campus 

building 

Monte Carlo 

Method 

• Incorporates random 

variations in energy 

usage, providing a more 

realistic model. 

• High flexibility method 

where it can be applied 

to various types of 

buildings and adapted to 

different energy systems 

• Requires a large 

amount of input data, 

including historical 

energy consumption 

and probability 

distribution. 

• Running multiple 

simulations requires 

significant processing 

power. 

Ghenai et 

al. [20] 

Academic 

buildings 

except 

student 

hostel 

To develop a 

short-term energy 

consumption 

forecasting model 

for a university 

Adaptive 

Neuro-Fuzzy 

Inference 

System 

(ANFIS) 

• Combines artificial 

neural networks and 

fuzzy logic for accurate 

energy forecasting. 

• Effective for Short-Term 

• Training can be time-

consuming, 

especially with large 

datasets 

• Complex model 
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building to 

improve energy 

planning and 

management 

Forecasting – Performs 

well in short term energy 

consumption prediction 

within minutes to hours 

needs expert tuning 

of parameters, 

including 

membership 

functions and training 

algorithms 

Tsala et al. 

[21] 

Multi-unit 

residential 

complex 

To analyze the 

impact of 

insulation 

materials on 

energy efficiency 

and 

environmental 

sustainability in a 

multi-unit 

residential 

complex, 

considering future 

climate conditions 

Building 

Energy 

Simulation 

(BES) with 

Weather 

Forecast 

Meteorologica

l Models 

• Allows detailed 

modeling of heating and 

cooling needs based on 

real climate data 

• Assesses different 

insulation materials and 

their impact on future 

climate conditions. 

• Helps in selecting the 

best materials for 

sustainability and energy 

efficiency 

• Requires detailed 

information on 

building materials, 

HVAC systems, and 

local climate data. 

• Simulations can be 

complex and time 

consuming, needing 

specialized software 

and expertise. 

• Results depend on 

input assumptions, 

which may not fully 

capture real world 

variation. 

 

As listed in Table 1, numerous studies on energy 

consumption characteristics and model forecasting, 

especially for residential buildings, have been conducted 

over the past few years. The proposed models are 

generally complex, requiring large and varied input data, 

thus necessitating intricate computer simulation 

programming. This complexity is mainly due to the 

intricate energy use characteristics of the buildings 

under study. 

Apart from that, research specifically focusing on 

student hostels remains limited. Given that student 

hostels can be significant energy consumers in 

Institutions of Higher Learning (IHL)—depending on 

their size and academic calendar—this study is 

considered essential. Additionally, occupant behavior in 

student hostels, characterized by lower appliance 

complexity compared to typical residential buildings, 

may require a different modeling approach—one that is 

less complex yet maintains high accuracy. In addition, to 

the authors’ knowledge, modeling using the statistical 

approach of the power-law function has never been 

conducted. Therefore, it is necessary to explore how the 

power-law function (polynomial fits) can be utilized to 

model energy consumption with less complex 

characteristics while achieving the highest possible 

accuracy. 

Therefore, this paper aims to analyze, understand 

and model the power demand profile of a student hostel. 

Furthermore, it seeks to determine whether it is 

appropriate to model the power profile characteristics 

using the statistical approach of the power-law function 

(polynomial fits), with only two independent input 

variables that significantly influence power demand: 

minutes past midnight and the type of day (weekday or 

weekend) for power and energy forecasting. In this 

study, a specific student hostel in an IHL will be 

selected as a case study. Due to variations in occupancy 

rates throughout the year, the maximum possible 

occupancy rate during an instructional or lecturing 

session will be chosen.  

Firstly, the power demand of the building will be 

measured and analyzed. The collected data will then be 

used to develop a prediction model. This model is 

expected to accurately estimate the building's power 

demand and energy consumption at different times of 

the year. Details of the methodology are presented in 

Section 2. In the future, the model is anticipated to serve 

as a baseline for identifying potential energy-saving 

measures and setting energy-saving targets, contributing 

to improved energy efficiency in the building. 

Additionally, the model framework can be applied to 

various types of buildings with similar complexity. 

2. METHODOLOGY 

2.1 Building Information and Description 

The campus area of an IHL consists of office buildings, 

educational buildings (faculties), a health center, a sports 

complex, student hostels, religious buildings, food 

courts (cafeterias), a library, and a safety office building, 

making it comparable to a small city. As a result, the 

amount of electricity consumed in this IHL is 

significant, necessitating energy conservation and 

efficiency practices to achieve the goal of a sustainable 

city and society, as highlighted in SDG 11 (Sustainable 

Cities and Communities) by the United Nations. 

In this study, a student hostel within an IHL, 

consisting of five blocks with nine levels each and an 

additional cafeteria block, is chosen as a case study. 

Figure 1 presents a top view alongside a side view of 

two blocks and the cafeteria buildings. Each block 

accommodates 1,000 students and includes a hostel 

management office, which operates from 8:00 am to 

5:00 pm. Additionally, each block is provided with one 

head fellow house and two fellow houses. 
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Fig. 1. The student hostel. 

 

In general, the power demand and energy 

consumption of this hostel can be considered unique, as 

they depend on the current academic session. The 

academic session whether it is the lecture/instructional 

period, mid semester break, study week, end-semester 

break, or a long public holiday affects the occupancy 

rate and the level of student activity related to energy 

usage. Consequently, the intensity of hostel energy 

usage is also highly influenced by the academic session 

during any given semester. 

Accurately predicting energy consumption in the 

hostel is essential, as the hostel is a major energy 

consumer within the IHL, particularly during the 

lecture/instructional period. Achieving high prediction 

accuracy for this significant energy consumer will allow 

for effective corrective actions to be planned and 

implemented, leading to substantial energy performance 

improvements across the entire IHL. Data from the IoT 

Energy Response System of the IHL indicates that the 

hostel accounts for the highest electricity consumption 

in the IHL, approximately 18.85% during the 

lecture/instructional period, as shown in Figure 2. For 

this reason, the hostel has been selected as the case 

study. 

 

 
 

Fig. 2. Load opportuning in January 2024 [22]. 
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2.2 Study Approach 

Figure 3 shows the methodology flowchart of this study. 

The main purpose of the site investigation is to assess 

the suitability of the hostel and determine the 

appropriate location for data logging. The total power 

demand was recorded at the main incoming power 

supply, located at the main switch block (MSB), using 

two calibrated Chauvin Arnoux power quality analyzers 

(Figure 4), model C.A 8435. During this field data 

measurement, flexible current sensors were clamped 

onto the incoming bus bars in the MSB. Data was 

recorded for two weeks at five-minute intervals. The 

data is considered complete if it is logged continuously 

for two consecutive weeks at five-minute intervals, 

without any missing entries or abnormalities. 

Therefore, total power in a day, P1 day can be 

calculated as in Equation 1, where n represents the total 

number of data points in the dataset per day. 

∑=day 1 nPP  (1) 

With a five-minute time interval per day, the total 

number of data points recorded from 12:00 am to 11:55 

pm is 288. The daily energy consumption, day 1E  can be 

calculated as follows: 

12
=

day 1

day 1

P
E  (2) 

If m is the total number of data points in the dataset 

between 8:00 am and 10:00 pm, the Maximum Demand 

(MD) for the day is predicted and defined as the highest 

power measured within this time period, where: 

( )
mPPPMD  ......, , ,MAX= 21  (3) 

The power consumption prediction model is 

formulated and proposed based on the real power profile 

characteristic. In general, the average power 

consumption at t minutes past midnight, tdataP ,  based on 

a total of q sampled power consumption data points at 

the respective t, tdataP ,  is determined by using Equation 

4 where: 

q

P
P

q

tdata

data,t

∑
1 ,

=  
(4) 

 

 

 
 

Fig. 3. Methodology flowchart. 
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Fig. 4. Power logging process using power quality analyzers. 

 

The predicted power consumption model 

correlation at 𝑡 minutes past midnight, tpredictP ,  is 

developed based on the dataset tdataP , . Power demand in 

a student hostel is expected to vary with minutes past 

midnight (𝑡) due to daily routines. The type of day is 

also expected to influence demand, with weekdays 

having lower daytime consumption as students attend 

classes, while weekends show higher all-day usage due 

to more flexible schedules. Therefore, 𝑡 and the type of 

day (either a weekday or a weekend) are expected to be 

key factors in accurately predicting power demand. 

Since tpredictP ,  is primarily a function of minutes past 

midnight (𝑡) and the type of day (either a weekday or a 

weekend), this relationship can be mathematically 

expressed in Equation 5. The general form of Equation 5 

for weekday and weekend datasets is then fitted using a 

power-law function, as shown in Equation 6, where 𝑎 is 

a constant and 𝑟 is the maximum power integer. 

MATLAB programming is used to determine the best 

correlation. 

( )the dayt,type of fP tpredict =,  (5) 

 

01
2

2
1 - 

1-, +++...++= atatatataP r
r

r
rtpredict  (6) 

 

The predicted energy consumption within a 

specified time frame, from t1 to t2, and for a given type 

of day (weekday or weekend), denoted as 
21-, ttpredictE , 

can be computed by integrating the corresponding 

tpredictP ,  correlation (Equation 6) over the specified time 

interval, as expressed in Equation 7. 

∫ 2

121

=

= ,-, =
tt

tt tpredictttpredict dtPE  (7) 

The model accuracy check is evaluated using 

percentage of error (% error), as defined in Equation 8, 

where tactualP ,  is the actual power consumption at t 

minutes past midnight. 

%100×
 - 

=error  %
,

,,

tactual

tactualtpredict

P

PP
 (8) 

Similarly, the % error for energy consumption 

prediction can be evaluated using Equation 9, where: 

%100×
 - 

=error  %
21

2121

-,

-,-,

ttactual

ttactualttpredict

E

EE
 (9) 

In addition, mean absolute percentage error 

(MAPE) is also used to measure the accuracy of a 

forecasting or predictive model. Generally, MAPE can 

be computed as in Equation 10 where s, iy  and iy  are 

the total number of prediction data points, actual value 

and predicted value, respectively [23]. 

%100×
 

 - 
Σ

1
=

1= i

ii
s

i y

yy

s
MAPE  (10) 

Moreno et al. [24] highlighted that a MAPE of less 

than 10% is considered highly accurate for forecasting. 

In this power and energy forecasting study, the 

predictive model is deemed acceptable if the individual 

percentage error and MAPE are less than 5% [25]. 

Otherwise, a new modeling formulation will be 

developed and refined using the optimal combination of 

power integer 𝑟 and the time-scale approach, while also 

incorporating additional independent variables that 

influence power demand and energy consumption. 

3.  RESULTS AND DISCUSSION 

3.1 Electricity Load Profiles 

The electrical profile for two weeks, obtained through 

electrical logging during the lecture/instructional session 

in early November 2023, is shown in Figure 5. All 

measured days exhibit a similar pattern, with the highest 
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power demand (MD) recorded between 8:00 pm and 

12:00 am, regardless of the type of day. 

As proposed by Sepehr et al. [8] and Wei and Bai 

[9], energy consumption patterns should consider 

different time scales or short-term periods for accurate 

prediction. Therefore, it is reasonable to divide the 

power profile in Figure 5 into four (4) distinct time 

scales: falling time, base-load time, rising time, and 

peak-load time. The corresponding time frames are as 

follows: falling time (12:00 am – 7:10 am), base-load 

time (7:10 am – 5:30 pm), rising time (5:30 pm – 8:00 

pm), and peak-load time (8:00 pm – 12:00 am). 

During falling time, power demand steadily 

declines, suggesting reduced activity as students sleep. 

During base-load time, power demand stabilizes at 

lower levels during the daytime, likely due to students 

attending classes or being outside. Additionally, the 

weekday base load is slightly lower than on weekends, 

implying that students spend more time outside for 

classes on weekdays. The higher base load on weekends 

also suggests prolonged in-room activities, such as 

entertainment and electronic device usage. Meanwhile, 

the nearly equal average base load between weekends 

and weekdays in Week 2 indicates that weekend 

activities maintained steady energy consumption. 

 

 
(a) 

 

 
(b) 

Fig. 5. Electricity load profiles. (a) Week 1, (b) Week 2. 

 

A significant increase in demand begins 

approximately between 5:30 pm and 8:00 pm (rising 

time) as students return, start using electrical devices, 

and prepare for the night. The highest recorded peak 

load occurs between 8:00 pm and 12:00 am (peak-load 

time). The maximum demands recorded during this 

period were 515.29 kW on Sunday at 10:05 pm 

(weekend) and 518.47 kW on Thursday at 9:40 pm 

(weekday), respectively. From a weekly perspective, the 

highest recorded peak varies in both timing and 
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intensity. In Week 1, the peak load on Sunday night may 

be linked to students preparing for the upcoming week, 

whereas in Week 2, the peak load on Thursday night 

suggests increased activity before the weekend, possibly 

due to assignments, entertainment, or social events. 

However, this MD does not impact the energy cost for 

the IHL, as the MD charged by the utility provider 

occurs during office hours (8:00 am to 5:00 pm). 

Based on these profile findings, it is proposed that 

future energy efficiency strategies should focus on peak-

load time (8:00 pm to 12:00 am). Additionally, weekend 

energy management should be considered due to 

relatively high base loads. However, load-shifting 

strategies are not recommended, as the MD and peak 

energy consumption of the hostel occur outside office 

hours, typically during the off-peak period, when the 

energy cost under tariff C1-OPTR (USD 0.064/kWh) is 

relatively lower, as compared to the on-peak period 

(USD 0.081/kWh). Note that 1 USD is equivalent to 

MYR 4.5310. 

Based on this energy profile, the building's daily 

energy consumption is calculated and visualized in 

Figure 6. In total, the hostel consumed 71,786.36 kWh 

and 71,298.21 kWh of electricity in Weeks 1 and 2, 

respectively. Assuming a four-week month, the 

estimated monthly electricity consumption for the hostel 

is approximately 286,169.15 kWh. Validation against 

the energy dashboard of the IHL for this hostel shows 

that the actual consumption for that month was 294,282 

kWh. The difference of approximately 2.76% is 

considered acceptable. 

 

 
(a) 

 

 
(b) 

Fig. 6. Electricity load profiles. (a) Week 1, (b) Week 2. 

 

3.2 Power Demand Correlation and Power 

Consumption Predictions  

Based on the power profile in Figure 5 and the 

recommendations of Sepehr et al. [8] and Wei and Bai 

[9], a power consumption prediction model is proposed 

at different time scales to enhance accuracy. Four-time 

scales are introduced, and the power consumption 

prediction demonstrates excellent R² values, as shown in 

Figure 7 and Table 2 for weekdays, and Figure 8 and 

Table 3 for weekends. Correlations were fitted and 

optimized using MATLAB programming through a 

statistical power-law function (polynomial fit) approach. 

In Figure 7, it is observed that the eighth-degree 

polynomial fit produces good R² values, thus providing 

the best correlation for power prediction across all time 

scales. Note that t represents the actual time past 

midnight in minutes. For example, 1:30 am corresponds 

to t = 90 minutes. As shown in Figure 7 and Table 2, the 

highest R² value (0.9989) is observed for the falling 

time, followed by the rising time (0.9978), base-load 

time (0.9802), and peak-load time (0.9057). 

The higher R² values, particularly during falling 

time, rising time, and base-load time, indicate consistent 

and predictable energy usage patterns on weekdays. 

However, during peak-load time, energy consumption 

becomes highly dependent on individual behavior, as 

most occupants are present in the hostel. Variations in 

energy awareness and time allocation contribute to 

potential deviations in the energy consumption profile. 

Nevertheless, the R² value of 0.9057 is considered 

sufficiently reliable for power demand and energy 

consumption prediction. 
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(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 7. Power demand correlation prediction base on time scale for weekdays. (a) Falling time, (b) Base-load time, (c) 

Rising time, (d) Peak-load time. 

 

Meanwhile, Figure 8 presents the best-fitted 

curves for power demand during weekends, with the 

fitted correlations for all time scales summarized in 

Table 3. Once again, the eighth-degree polynomial fit 

produces good R² values, except for the peak-load time 

scale. The ranking of R² values follows the same pattern 

as in the weekday case, with the highest for falling time 

(0.9968), followed by rising time (0.9962), base-load 

time (0.9566), and the lowest for peak-load time 

(0.6100). However, compared to the R² values obtained 

for weekdays, the values for all time frames during 

weekends are lower. This suggests that energy usage 

patterns on Saturdays and Sundays are more complex 

and less predictable than those on weekdays.   

In this context, the most complex condition occurs 

during the peak-load time scale, as indicated by the 

lowest R² value of 0.6100 (Figure 8(d)). This 

characteristic is significantly influenced by the absence 

of class commitments on the following day (Saturday) 

and the preceding day (Sunday), allowing for greater 

variations in lifestyle preferences that impact building 

power demand compared to weekdays. The model 

accuracy checks for this time frame showed that the R² 

value improved from 0.6089 (eighth-degree polynomial 

fit) to 0.6100 (ninth-degree polynomial fit) before 

slightly decreasing to 0.6098 (tenth-degree polynomial 

fit). Therefore, the ninth-degree polynomial fit was 

selected for the peak-load time frame. 
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Table 2. Proposed weekdays energy modelling base on time scale and time frame. 

Time 

Scale 

Time 

Frame 
Power Prediction Correlations R2 

Falling 

12:00 

am  t <  

7:10 am 

( ) ( )

( ) ( ) ( )
( ) ( )

( ) 830436487.946082+79880750.34473366

-79645820.00506438-562341074460.00007800

+10×2689496.87706470-10×3702843.82414886+10×5072151.21643845

-10×975671.99626803+10×2762244-1.3047164=

23

4-7-59-611-

7-148-17
,

t

tt

ttt

ttP tpredict

 0.9989 

Base-

load 

7:10 am 

 t <  

5:30 pm 

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) 294604251570.178+157452942.29924-74414514.8292663+91849770.04197761

-619531108030.00007299+10×1700797.98645385-10×7142835.37344219

+10×9396392.03438961-10×5069443.32154944=

23

458-611-

7-148-18
,

ttt

ttt

ttP tpredict

 0.9802 

Rising 

5:30 pm 

 t <  

8:00 pm 

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) 87.023503135425-.089682508553010+8692387856179.80-63734114054.1665

+93843515.7080511-16458210.01123215+10×5806095.01795867

-10×8799751.28055028+10×9265555-1.4291828=

23

4566-

7-98-13
,

ttt

ttt

ttP tpredict

 0.9978 

Peak-

load 

8:00 pm 

 t <  

12:00 

am 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

.913773511662213

-09879820716853.0+14140953338.9809-66228578.2682891

+84368530.07157839-574824626040.00004176+10×3233961.51825997

-10×6137053.14240197+10×0289119-2.8343569=

23

4568-

7-128-16
,

ttt

ttt

ttP tpredict

 0.9057 

 

 

Fig. 8. Power demand correlation prediction base on time scale for weekend. (a) Falling time, (b) Base-load time, (c) 

Rising time, (d) Peak-load time. 
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Table 3. Proposed weekend energy modelling base on time scale and time frame. 

Time 

Scale 

Time 

Frame 
Power Prediction Correlations R2 

Falling 

12:00 

am  t 

<  7:10 

am 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

420932467.086233

+38857850.30115734-43641860.00581419+84876397050.00014744

-10×5086891.46097559+10×4413057.33811533-10×8345271.99055794

+10×4967982.76904340-10×1685351.54626401=

23

46-59-611-

7-148-17
,

ttt

ttt

ttP tpredict

 0.9968 

Base-

load 

7.10 am 

 t <  

5:30 pm 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

90896619.060902

+16776612.9176567-14694650.11710988+33006051770.00047109

-696308101.03569503+203517101.33186473-135202101.00124487

+107871104.08124891-10×188516.97431569=

23

46-59-612-

7-168-20
,

ttt

ttt

ttP tpredict

 0.9566 

Rising 

5:30 pm 

 t <  

8:00 pm 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

21.3542632534921

-.162221877772991+0828165857660.44-14880810437.6032

+05175111.6195797-89734110.00827546+10×5193293.68219712

-10×7086119.35869517+10×5723828-1.0402393=

23

4566-

7-108-13
,

ttt

ttt

ttP tpredict

 0.9962 

Peak-

load 

8:00 pm 

 t <  

12:00 

am 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) 76.0871216521451+646331810053755.

-2643862394582.67+5451054124.34859-7753934.56116181

+67384880.00335869-06-499735E1.64674558+10-876822E5.18360969

-14-197194E9.50545671+10×2059994-7.7362449=

234

567

89-18
,

t

ttt

ttt

ttP tpredict

 0.6100 

 

3.3 Power Demand Correlation and Power 

Consumption Prediction Validations 

In this validation exercise, actual power demand and 

energy consumption for selected days in December 2023 

were analyzed. Tables 4 and 5 present the predicted 

values generated by the proposed models for estimating 

building power demand and energy consumption at 

various times, t and time frames, respectively. The 

differences between the predicted values and the actual 

data, measured using a power quality analyzer, are also 

presented. 

 

Table 4. Power demand validation. 

Day/Date Time 
Power (kW) 

Model Prediction Actual % Error 

Saturday/9 Dec 2023 7:00 pm (t=1140 min) 437.88 443.69 1.31 

Sunday/10 Dec 2023 10:00 pm (t=1320 min) 481.25 479.46 0.37 

Monday/ 11 Dec 2023 3:30 am (t=210 min) 405.90 409.35 0.84 

Tuesday/12 Dec 2023 2:15 pm (t=855 min) 406.71 388.82 4.60 

Wednesday/13 Dec 2023 7:00 pm (t=1140 min) 465.98 456.51 2.07 

Thursday/ 14 Dec 2023 10:00 pm (t=1320 min) 488.12 488.18 0.01 

Saturday/ 16 Dec 2023 5:50 am (t=350 min) 392.18 392.58 0.10 

Sunday/17 Dec 2023 2:00 pm (t=840 min) 412.52 418.74 1.49 

 

Table 5. Energy consumption validation. 

Day/Date Time Frame 
Energy Consumption (kWh) 

Model Prediction Actual % Error 

Saturday/9 Dec 2023 1 day 10,152.12 10,215.81 0.62 

Monday/ 11 Dec 2023 1 day 10,244.58 10,389.22 1.39 

Tuesday/ 12 Dec 2023 8.30 am  t  4:30 pm 3,155.49 3,088.82 2.16 

Wednesday/ 13 Dec 2023 9.00 pm  t  11:40 pm 1,311.6 1,351.70 2.97 

Sunday/ 17 Dec 2023 5.00 pm  t  11:35 pm 3,141.61 3,065.65 2.48 

 

 

Based on Tables 4 and 5, the maximum errors for 

power demand and energy consumption estimation are 

4.60% and 2.97%, respectively. Additionally, the MAPE 

values for power demand and energy consumption 

forecasting are 1.35% and 1.92%, respectively (Figure 

9). These values, all below 5%, indicate that the 

proposed model demonstrates good accuracy in 

predicting the building's power demand and energy 

consumption. It is evident that the two independent 

variables selected for this model development (minutes 
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past midnight and type of day), along with the power-

law function approach, are appropriate. However, since 

the model is developed based on historical data, it is 

considered model-specific, and its applicability is 

limited to the building’s operational conditions at the 

time of data collection. As the field data measurement 

was conducted during the lecture/instructional session 

when the building was fully occupied, applying this 

model outside this period such as during semester breaks 

when occupancy is significantly lower is not valid. 

 

 
Fig. 9. Mean absolute percentage error of the forecasting 

model. 

 

4.  CONCLUSION 

In this study, power demand profile of a student hostel 

was analyzed, validated and mathematically modeled. 

The power profile was categorized into four (4) distinct 

time scales: falling time (12:00 am – 7:10 am), base-

load time (7:10 am – 5:30 pm), rising time (5:30 pm – 

8:00 pm), and peak-load time (8:00 pm – 12:00 am). 

The MDs recorded for weekend and weekdays were 

515.29 kW (Sunday at 10:05 pm) and 518.47 kW 

(Thursday at 9:40 pm, respectively. These MDs do not 

impact the energy cost for the IHL, as the actual MD of 

the IHL charged by utility provider occurred during 

office hours (8:00 am to 5:00 pm). Based on this 

finding, load-shifting strategies are not recommended, as 

the MD and peak energy consumption of the hostel 

occur outside office hours, typically during the off-peak 

period when energy cost under the C1-OPTR tariff is 

relatively lower than during the on-peak period. 

However, it is recommended that energy efficiency 

strategies focus on peak-load times (8:00 pm to 12:00 

am) and that weekend energy management be 

considered due to relatively high base loads. 

In the context of the proposed data-driven 

predictive model, the maximum errors for power 

demand and energy consumption estimation are 4.60% 

and 2.97%, respectively. Additionally, the MAPE values 

for power demand and energy consumption forecasting 

are 1.35% and 1.92%, respectively. These results 

demonstrate that modeling across four distinct time 

scales using two independent variables (minutes past 

midnight and type of day), along with the power-law 

function approach, is effective for predicting the power 

demand and energy consumption of a student hostel. 

During the model optimization stage, eighth- to ninth-

degree polynomial fits were found to provide the best 

power forecasting performance, achieving R² values as 

high as 0.9989. However, predictions for peak-load 

periods during weekends were more complex, with an 

R² value of just 0.6100. Compared to previous models 

proposed by other researchers, the proposed model is 

relatively simple and does not require extensive or 

intricate computer simulation programming. However, a 

key limitation of this data-driven model is that it was 

developed based on data collected during specific 

lecture/instructional sessions, limiting its applicability 

across the entire academic calendar.  

In the future, incorporating additional significant 

parameters along with the integration of machine 

learning techniques that influence power demand and 

energy consumption could further enhance the model’s 

accuracy in predicting power demand and energy usage. 

Factors such as outdoor air temperature, examination 

days, and a more detailed occupancy rate could be 

included in future model development. Integrating 

machine learning into the model would enable a more 

comprehensive evaluation of various energy 

consumption scenarios and their potential impact. 

Consequently, it is also proposed to explore this 

modeling approach beyond student hostels, such as in 

commercial and industrial buildings. 

In short, the proposed data-driven predictive model 

can provide quick and accurate information for power 

demand and energy consumption predictions, towards 

building energy efficiency improvement and effective 

energy costs management by optimizing overall energy 

use. Therefore, it is expected to be valuable for future 

Demand Response (DR) programs, supporting the 

analysis of DR initiatives and the optimization of energy 

efficiency strategies. Indirectly, it can contribute to the 

environmental sustainability, as now become primary 

concern around the world. 
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