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Abstract – The integration of autonomous vehicles (AVs) within the society has been a topic of interest since the 

1950s when the trials on the first advanced driver assistance system (ADAS) began. The promise of autonomous 

driving systems is based on their ability to traverse with human-level perception, especially object detection in 

driving environments. This is essential for safe and reliable navigation but adverse weather conditions like 

sandstorms, rain, dense fog, and heavy snowfall hinder the robustness of the perception system. To address the 

problem of low visibility in adverse weathers like these, our proposed approach implemented feature extraction using 

content-based information retrieval (CBIR) for contrast enhancement and Enhanced Super Resolution Generative 

Adversarial Networks (ESRGAN) for image restoration. Further, YOLOv9 - the latest breakthrough in object 

detection was used. This work was the first initiative taken towards exploring the implementation of adverse weather 

driving dataset on Yolov9. The methodology was successful in achieving an average precision of 97.17% in detecting 

objects across all weathers with an overall mean Average Precision (mAP) of 72.87. These encouraging results might 

prove to be beneficial for safer and more reliable autonomous vehicle operation in diverse weather conditions. 
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11. INTRODUCTION 

The sensors in an object detection system form the basis 

of all data extracted from the driving environment. In 

current ADAS systems, three types of sensors are 

employed for data collection, namely Light Detection 

and Ranging (LiDAR), Radio Detection and Ranging 

(RADAR) and Cameras. Among these sensors, the 

multiple cameras mostly present on the windscreen, on 

the sides and at the rear of the car are the sole source of 

all visual data input for processing. This data is essential 

in enabling AVs to identify and locate entities such as 

vehicles, pedestrians, traffic-lights and signs and other 

potential obstacles.  

The images taken by the camera are divided into 

training and testing sets according to the preference of 

training employed. The training set consists of annotated 

images, i.e. images with bounding boxes drawn around 

objects that are crucial for detection. The bounding 

boxes coordinates signify the edges of an object which 

are noted as labels for the specific image that serve as 

the ground truth for supervised learning. 

 You Only Look Once (YOLO) is a fully 

convolutional neural network that anticipates bounding 

boxes and class probability confidence scores 

immediately from entire input image dataset in one 

screening. YOLO models sport a light-weight 

architecture and have lower computational costs in 

comparison to other object recognition models. This 

allows them to run on devices with moderate graphics 
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processing unit (GPU) capabilities.  Another lucrative 

feature of YOLO models is that unlike faster Region-

Based Convolutional Neural Network (R-CNN) that 

requires separate stages for region proposal and 

classification, YOLO performs both tasks in a single 

forward pass. This makes it more efficient for real time 

applications. 

 While YOLOv9 is an avant-garde advancement in 

the field of object recognition, its ability to perform 

under adverse weather conditions remains largely 

untested [1]. Study on autonomous driving in adverse 

weather becomes a matter of importance due to the 

introduction of noise in the data. In heavy rainfall, the 

pixel intensity decreases hence, blurring the object 

outline. Similarly, in dense fog, the overall image 

contrast and visibility is reduced due to hazy and opaque 

environments. In the case of sand-storms, the dust 

clouds result in scattering of light due to which accurate 

bounding box predictions become difficult. During 

heavy snow conditions, visibility is drastically reduced 

and reflection of sunlight introduces glare in the inputs. 

Other than the qualitative degradation of images, 

suspended particles stick to the camera lens resulting in 

occlusions and low range vision.  

 Thus, image enhancement is crucial for restoring 

temporal information in the images for better object 

recognition. Temporal information can help identify 

moving objects, e.g. vehicles, pedestrians; 

understanding object interactions, actions, and 

behaviors, e.g. cars stopping in front of pedestrians. 

Image enhancement techniques can help restore the 

subtle details within an image that might have been lost 

by filling them with relevant information. Some of these 

methods can be noise reduction, image sharpening, 

contrast enhancement and increasing pixel resolution. 

While synthetic datasets offer a controlled environment 
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for model training, they struggle with real-world driving 

conditions as they fail to handle variations in light 

scattering, reflections and occlusions. Hence, the 

proposed model leverages a real-world adverse weather 

autonomous driving dataset, Detection in Adverse 

Weather Nature (DAWN) for enhancing the 

generalizability and robustness in actual driving 

conditions. It consists of 1000 images across four 

different weathers- rain, fog, snow, sandstorm with 

different traffic flow in varied driving environments 

(urban, highway, densely populated, sparsely populated) 

[2].  

 The purview of this paper can be encapsulated as 

follows: 

1. Achieving all-weather autonomy to broaden the 

operational scope of autonomous vehicles and to 

develop a comprehensive pipeline of processed 

images that is input into YOLOv9 for robustness. 

2. Developing a content based feature extraction 

method for image enhancement to improve 

visibility in various weather conditions.  

3. Enhancing object detection by improving mAP and 

precision for autonomous vehicles in rain, fog, 

sandstorms, and snow.  

4. Lowering computational costs of pre-processing 

dataset and detection model by using light-weight 

YOLOv9 model. 

 The further sections of the paper are structured as 

follows: Section 2 presents an overview of the related 

works in the field of ADAS safety and object detection 

along with image enhancement techniques. In Section 3, 

implementation of the proposed methodology is 

presented and Section 4 discusses its results obtained. 

Section 5 focuses on the prospects of future work and 

conclusion drawn.   

2.  RELATED WORKS  

This section discusses the relevant works that happened 

in the field of autonomous driving, methodologies 

employed and their direct impact on the present research 

scenarios. As discussed earlier, hostile weather 

conditions like heavy rain, fog, sandstorms, snow 

creates situations where object detection is unreliable, 

such as water reflections on road and glare due to snowy 

driving environments which can be detrimental to the 

efficiency of ADAS.  

Research has been conducted on simulating 

uncertainties in autonomous driving such as adverse 

weather and road conditions. A safety score was 

calculated using Response Surface Method (RSM), that 

kept in account the uncertainties which were compared 

from the safety threshold. This was a robust method for 

ensuring safe driving [3]. Thus, the need to increase the 

effectiveness of the sensors was realized which could 

work better in harsh weather. Another work showed the 

effects of weather conditions on several sensors 

including cameras [4]. In autonomous electric vehicles 

(EVs) fusion of different sensors like cameras and 

LiDAR showed promising results in feature recognition 

of 3D object detection [5]. 

Despite the many advancements made to increase 

sensor quality, they had their physical limitations. Thus, 

for better efficacy, making improvements to the ADAS 

system depended on the enhancement of image 

processing methods or on improving the object detection 

model. A paper mentioned testing different systems on 

traffic monitoring and tracking tasks in bad weather to 

analyse their performance. It also highlighted that 

despite the good performance of YOLOv5x, it struggled 

in multiple combinations of bad weather. Hence, it 

became important to introduce weather-aware models 

for handling different environments [6]. 

A survey on a custom-based dataset evaluated 

various deep learning object detection models like R-

CNN, Faster R-CNN and YOLO. It also showcased the 

need to improve their architectures for marking out the 

arena of their interest in an image [7]. In another work, 

DarkNet framework was used within tiny YOLOv4, 

which achieved 80% accuracy in simulation of 

autonomous EVs [8]. Nevertheless, the various 

improvements made in deep learning-based object 

detection models could not completely tackle the noise 

introduced by adverse weather variables. Thus, image 

enhancement could be a reliable pre-processing method. 

Some previous works discussed the various techniques 

of enhancing images degraded due to weather 

conditions. The methods used included de-hazing, de-

noising, contrast enhancement and altering Red-Green-

Blue (RGB) component channels in images [9]. The 

Reinforced Image-based Object Detection (RIOD) 

YOLO model aimed at optimizing image quality by 

estimating illumination and transmission factors. It 

reported better results when implemented on YOLOv4 

and YOLOv5 models for both images and videos [10]. 

Some deep learning based image processing techniques 

also showed break-through results in image processing 

[11]. Another work used a novel unsupervised auto 

encoder technique for extracting features from images. 

This stemmed from the idea that while detection models 

work well in normal weathers, their accuracy reduced 

drastically in weather conditions that they were not 

trained for [12].  

Other than machine learning models, Generative 

Adversarial Network (GAN) architectures were also 

used for enhancing object recognition through two 

major applications- restoration of lost temporal 

information due to adverse weather and increasing 

resolution [13]. Adding to these advancements in the 

field of automation and detection, the work done in this 

paper was built leveraging the existing ESRGAN model 

with proposed CBIR. It handled different weathers 

causing image degradation by targeting features like 

pixel intensity, number of edges and their standard 

deviations to find similar images in the dataset. Images 

with high temporal similarity were processed in the 

same manner. 
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3. PROPOSED METHODOLOGY 

The proposed methodology consists of the following 

sections: Section 3.1 discusses about the dataset used. 

Section 3.2 mentions the contrast enhancement 

technique using CBIR and Section 3.3 focuses on the 

enhancement of image resolutions using ESRGAN. In 

Section 3.4, the paper discusses the method used for 

object detection, namely YOLOv9. 

3.1 Dataset  

The dataset used in this work, was selected keeping in 

mind the variable factors introduced during adverse 

weather conditions that could affect the perception 

ability of cameras. Hence, after careful considerations, 

DAWN dataset was found to have greater similarities 

with real-world driving conditions. It consisted of 1000 

images demonstrating four adverse weather scenarios of 

heavy fog, rain, snow and sandstorms extracted from 

Mendeley repository. The different traffic flows in 

diverse driving environments (urban, highway, densely 

populated, sparsely populated) helped in covering a 

wide range of training and testing scenarios for model 

generalization. 

This dataset consisted of labelled ground truths that 

were adjusted manually with RoboFlow [14] to suit the 

requirements of tight bounding boxes around objects of 

significance in training. This ensured more accurate 

localization of objects and reduced the chances of 

including irrelevant background pixels, thereby reducing 

the number of false positives.  

The annotations consisted of the following number 

of ground truth boxes in the dataset:  

 
Table 1. DAWN dataset distribution. 

Classes Sand Fog Rain Snow 

Car 1751 1024 1349 1306 

Bus 57 53 16 23 

Truck 199 96 196 87 

Pedestrian 188 88 28 138 

Motorcycle-Bicycles 68 34 4 2 

 

A dataset unbalanced to this extent needed several 

augmentation techniques to balance it for preventing any 

case of under-fitting or overfitting that could impact the 

precise and accurate decisions of the model. The various 

augmentation methods used were horizontal flip, 

rotation of minus 15 and plus 15 degrees and mosaic 

data augmentation. Additionally, pre-training of the 

YOLOv9 model was carried out using the MS-COCO 

dataset comprising of 80 classes. It contained 2,500,000 

annotated instances over 80 classes. The pre-trained 

weights of MS COCO were then used for transfer 

learning of the model on DAWN dataset. The train-

validation-test split ratio used in this was 60:25:10. The 

Dense-Haze benchmark dataset released by New Trends 

in Image Restoration and Enhancement (NTIRE) 

consisted of 55 sets of hazy and their complementary 

ground truth images of various combinations of scenes 

employed in transfer learning of ESRGAN [15]. 

3.2 Contrast Enhancement with Similarity Grouping 

Classifying images based on their visual statistical data 

facilitated the necessary similarity grouping of images 

based on their spatial and spectral information. This 

information was further leveraged to apply selective 

contrast enhancement techniques based on their 

requirements. CBIR queried the DAWN dataset for 

fetching visually similar images by comparing their 

values [16]. The feature extraction processing was done 

by studying the different color intensities involved in the 

RGB channel of each pixel; the overall color 

distribution, standard deviation of pixel intensities and 

detection of color spaces to identify the boundaries of 

different objects in a particular image. 

These relationships were further extended to 

determine the various color spaces present within a pixel 

in an image. Different weather images needed different 

techniques within their color channels to be employed to 

suit their needs of a clear, saturated and defined 

boundary formation of objects. Heavy snow images with 

more white light and low contrast made it difficult to 

distinguish background snow from snow covered objects 

leading to loss of temporal information. Changes were 

made in the L component of the L*a*b* color space to 

redistribute the brightness level based on its mean and 

standard deviation values. The challenges of preserving 

the original colors and converting the details back to 

RGB color channels were tackled by defining the lower 

and upper bounds for contrast stretching and applying 

histogram equalization, Contrast Limited Adaptive 

Histogram Equalization (CLAHE) and unsharp masking 

to define and sharpen the object boundaries. 

The yellowish and orange tints present in the 

sandstorm images which reduced the visibility of 

present objects was lowered while preserving the colors 

and enhancing the image side by side. This was 

implemented by changing the b* channel in the L*a*b* 

perceptual channel which was responsible for the yellow 

color. This combined with the unsharp masking made 

the images visually perceivable. The low-light hazy and 

misty images obtained from the DAWN dataset of rain 

and fog weathers were enhanced with the modification 

of standard and perceptual channels, namely RGB and 

L*a*b*. The process involved controlling the L* 

component in the L*a*b* channel while equalizing the 

RGB channels independently to spread out the pixel 

intensities. These values were calculated for each pixel 

based on the cumulative distribution function (CDF). 

The different experiments in the color channels 

helped in finding the optimal balance of contrasts 

needed for image processing to make the objects more 

recognizable for object detection. The processed images 

were free of noise and hence, were suitable for feeding 

into ESRGAN for resolution enhancement. 

3.3 ESRGAN  

The images retrieved after contrast enhancement were 
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then further fed into the ESRGAN for increasing the 

resolution of the image and restoring lost temporal 

information in them. The GAN architecture consisted of 

a generator which attempted at restoring image from 

noisy pixels and a discriminator that tried to tell 

enhanced image apart from the real image. Thus, as the 

training progressed, the generator got better at reducing 

gaps between the ground truth image and generated 

images, hence producing more realistic and natural 

textures [17].  

As training a computationally expensive GAN 

architecture could be quite expensive, transfer learning 

was performed on a smaller 55 image dataset, namely 

Dense-Haze dataset. The model was thus fine-tuned to 

the requirements of the DAWN dataset testing. To 

reduce any existing noise in the dataset and to avoid 

huge computational expenses due to processing images 

with very high resolution; the testing dataset was 

manually down-sampled by a factor of 2. This down-

sampled dataset was further fed into the ESRGAN 

model. The GAN model up-sampled the image by a 

factor of 2 thus, restoring it back to its original 

resolutions while also simultaneously enhancing its 

detail and quality.  

The enhanced images were de-hazed and had less 

noise while also maintaining the object boundaries. This 

contextually rich and noise-free dataset was then ready 

to be input as a training dataset for the object detection 

model. 

 
Fig. 1. ESRGAN architecture. 

3.4 YOLOv9 Object Detection 

The YOLO family of models, unlike other object 

detection algorithms, takes a single shot at an image 

rather than analyzing images in parts. The YOLO 

models offer a range of applications especially in real-

time implementation such as traffic monitoring, self-

driving cars, and inventory management. The several 

YOLO variants offer a trade-off between speed and 

accuracy. The higher variants have a more complex 

architecture, hence providing more efficient results 

while the lower variants with simpler models provide 

higher speed of training and inference. YOLOv9 

surpassed its predecessors in terms of robustness.  

YOLOv9 addressed the problem of information 

bottleneck where crucial information got lost in the 

earlier stages of training which led to loss of gradient. 

Deeper models had higher probabilities of information 

getting lost due to a greater number of layers. This could 

be tackled by introducing a higher number of parameters 

but it also added to the computational complexity of the 

model. Hence, the YOLOv9 model employed the use of 

reversible functions to recover the gradient loss, thus 

maintaining data consistency.  

Architecture: The architecture of YOLOv9 can be 

broadly divided into 2 main modules:  

1. Generalized Efficient Layer Aggregation Network 

(GELAN): It is a light-weight network architecture 

designed to optimize inference speed, parameters 

and computational complexity.  

2. Programmable Gradient Information (PGI): This 

module tackles the previously mentioned issue of 

information bottleneck. PGI introduces a new 

auxiliary branch in the architecture which ensures 

that correct gradients are used to update layer 

weights in the network. Hence it assists in preserving 

important information for efficient object detection.  

YOLOv9 has four variants i.e., v9-Small, v9-

Medium, v9-Compact, v9-Extended with each variant 

having more parameters than the previous one. The 

proposed methodology employed YOLOv9-C as the 

primary model. MS-COCO dataset having 80 object 

classes was used for pre-training the model. Transfer 

learning was then performed using the pre-trained 

YOLOv9 weights to generate an adjusted weights file 

which was fine tuned to suit the proposed model. The 

model was further validated and tested to generate 

results.  

To fine tune the model, hyperparameter tuning was 

done on the model. Hyperparameters involved in the 

training were, learning rate: lr0=0.01, 

weight_decay=0.0005, box loss threshold: box=7.5, 

class loss threshold: cls=0.5, distribution focal loss 

threshold: dfl=1.5, Intersection over Union threshold 

(IoU): iou_threshold=0.5, mosaic_aug=1.0, mixup=0.15, 

epochs = 100, batch_size = 16, confidence threshold: 

conf = 0.4.  

The computational prowess of YOLOv9 is unlike 

its preceding YOLO variants. Compared with YOLOv7, 

YOLOv9-C has 42% less parameters and 22% less 

calculations, but achieves the same average precision 

(53%). 

Figure 2, illustrates the implementation of 3 phases 

of the proposed methodology and its data flow through 

the pipeline, in the order, contrast enhancement with 

similarity grouping, ESRGAN and YOLOv9 object 

detection. 
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Fig. 2. Proposed model phases (a) contrast enhancement with similarity grouping, (b) ESRGAN, (c) YOLOv9 object detection. 

 

4. EXPERIMENTS AND RESULTS 

4.1 Experimental Setup  

The stated methodology was executed using Python 3 as 

the main programming language. The deep learning 

networks were trained using TensorFlow and PyTorch. 

Libraries like OpenCV and Pillow were employed in 

image pre-processing. The further system requirements 

used in training and testing the model were as follows: 

Graphical Processing Unit (GPU) with CUDA cores 

support using Google Colab (Intel Xeon CPU@2.20 

GHz), 16 GB RAM, a Tesla K80 accelerator and 12GB 

GDDR5 VRAM. The mosaic data augmentation 

technique was closed for the last 15 epochs to enhance 

the generalizability of the model and mAP evaluation 

metric was chosen as the main metric for object 

detection 

4.2 Evaluation Metrics 

As the field of object detection keeps developing new 

benchmark models, it became extremely important to be 

able to quantify the results achieved from them. This 

documentation was essential in many ways, such as, 

determining the health of the dataset used; accuracy of 

parameters used for training the model; whether the 

model generalized to the dataset and most importantly if 

the model performed accurate object detection. The 

importance of defining the correct metrics as a method 

for evaluating the YOLO model in the scenario of 

autonomous driving was even more crucial. In 

autonomous transport systems, guaranteeing the security 

of passengers as well as pedestrians and other vehicles 

on the road was of utmost importance. Hence, the 

proposed model was closely monitored and evaluated 

against the three most important evaluation metrics for 

an object detection system i.e., precision, accuracy, and 

mAP. 

Precision is the ratio between the number of 

positive samples accurately classified to the total 

number of samples classified as positive, irrespective of 

whether they are correctly or incorrectly identified. A 

higher precision reflects the ability of the model to make 

a higher number of truly positive predictions as 

compared to false positive predictions. This implies a 

higher probability of a model to correctly classify 

detected objects with their respective ground truths.  

Hence a higher precision is considered as an 

important factor for labeling a model as reliable. 

Accuracy is the measure of how well a model 

performs across all classes in an object detection model. 

It is an evaluation metric of high importance especially 

for a model where all classes are of equal importance. It 

is the ratio of the number of correct predictions to the 

total number of predictions made. Accuracy might be 

deceptive when the dataset is heavily imbalanced 

leading to wrong perception of model’s efficiency. 

Average precision is the area under the precision-

recall curve. The mean of average precisions across all 

classes in a particular model is defined as the mAP score 

of the model. In YOLO variants, mAP score is the main 

performance metric. It is calculated over a particular 

IoU threshold. This threshold is an indicator of the 

minimum overlap over ground truth and predicted 

bounding boxes for a prediction to be considered a 

success.  

4.3 Computational Metrics 

Besides the metrics that evaluate the model’s 

performance as an efficient object detector, 

computational metrics form a central point of assessing 

how well the model utilizes the available resources 

during training and testing. Some of the major 

computational metrics important for evaluating the 

model are time taken for training, inference time, 

number of parameters and throughput generated. 

Training time is the total time taken for a model to 

train on the input dataset. While higher training time 

might also be an indicator of better resources like high 

performance GPU availability or a relatively larger 

dataset, but when tested on similar systems and same 

dataset, a model with less training time indicates more 

efficient allocation of computational resources whereas 

inference time is defined as the least time taken by a 

model to make inferences about a single data point. 

Smaller inference time indicates that faster predictions 

are made. This is especially essential in resource 

constrained devices. Training time is typically measured 

in minutes or hours and inference time is calculated in 

milliseconds or seconds per image or sample.  
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When training a model, it involves several 

trainable parameters represented in its architecture. 

These parameters are learned during training. While a 

higher number of parameters could imply better model 

capacity, it also implies that it requires more data and 

higher computational resources. It also means that the 

model could potentially be suffering from overfitting. 

Throughput metric combines batch size and 

inference time to represent the model’s processing speed 

for multiple data points. It is expressed as frames per 

second (fps). Higher throughput implies a more robust 

object detection model. 

4.4 Results and Discussions 

This work was a first initiative towards analyzing the 

performance of adverse weather driving DAWN dataset 

in assessing the performance of YOLOv9 and our 

proposed methodology. Hence, the DAWN dataset was 

first trained and tested on the original YOLOv9-C 

framework without any pre-processing techniques to 

understand the base results which were achieved. The 

mAP score of 65.26 achieved during the initial phase 

indicated the possible chances and potential of 

improvements which could have enhanced the results, if 

some image pre-processing methods were additionally 

used. 

By enhancing the resolutions of dataset images, it 

was noticed that they had sharper edges and the textures 

appeared more natural. The output images also had 

increased perceptual quality which would directly reflect 

as better results for object detection. On training the 

YOLOv9 model with the resolution enhanced images, 

an overall accuracy of over 80% was recorded. 

 

 
Fig. 3. Comparison of object detection using (a) only YOLOv9, (b) YOLOv9 + ESRGAN, (c) proposed methodology in dense 

fog; (d) only YOLOv9, (e) YOLOv9 + ESRGAN, (f) proposed methodology in sandstorm; (g) only YOLOv9, (h) YOLOv9 + 

ESRGAN, (i) proposed methodology in heavy rain; (j) only YOLOv9, (k) YOLOv9 + ESRGAN, (l) proposed methodology in 

heavy snow. 

 

As can be referenced from the Figure 3 (a), (d), (g), 

(j) the raw images obtained from DAWN dataset had 

noise and blurriness. Due to the haze and dust particles 

present in the environment, visibility was reduced to 

such levels that the perception of objects which were 

farther away from the camera was hardly 

distinguishable. This resulted in low number of 

detections as compared to the ground truth and low 

confidence scores for the objects that were successfully 

detected. 

After passing them through ESRGAN and then 

performing object detection the images present in Figure 

3 (b), (e), (h), (j) looked almost like the images in Figure 

3 (a), (d), (g), (j), but had better defined object 

boundaries and higher confidence scores with more 

precision. However, while preserving the original 

texture of the input images, there was an increase in the 

level of smoothing. Moreover, the resolution increment 

was not sufficient to tackle the issues due to haze and 

noise present in the color channels of the image. 

To accomplish even better results, similar images 

were contrast enhanced. Instead of simply altering all 

the images in a dataset with the same contrasting 

methods, images with similar range of information were 

grouped based on certain characteristics like color and 

intensity or spatial similarity. They were then processed 

with techniques employed in our proposed methodology 

for generation of saturated and color enhanced images as 

can be referenced in Figure 3 (c), (f), (i), (l). These 

results, when fed into YOLOv9 for object detection, 

recorded impressive results as compared to original 

results. While the accuracy was like that of ESRGAN 

enhanced images, the precision and mAP values were 

significantly better. 

The mAP values records for all four weathers as 

shown in Figure 4 (a), (b), (c), (d): fog, rain, snow, and 

sandstorms were recorded to be 0.747 for sandstorms, 

0.732 for foggy conditions, 0.758 for rain and 0.651 for 

snowy weather. Furthermore, the class wise mAP of all 

five classes was found out to be 0.8725 for cars, 0.6722 
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for trucks, 0.5205 for bus, 0.7137 for pedestrians, 0.831 

for motorcycles and bicycles. 

Table 2. Results comparison. 

Metric YOLOv9 
YOLOv9 + 

ESRGAN 

Proposed 

Model 

Accuracy 73.45 80.03 80.01 

Precision 94.01 96.27 97.17 

mAP 65.26 70.55 72.87 

 

The object detection model used also had an edge 

over previous models as it had a lesser number of 

parameters, making it comparably robust. The 

YOLOv9-C version used in the paper had only 25.3M 

parameters as compared to YOLOv7 that had 36.9M 

parameters. The YOLOv9-C model had 102.1G FLOPs 

compared to YOLOv7 which had 104.7G FLOPs. Thus, 

it can be concluded that the model had a potential to 

become a more light-weight and computationally 

affordable alternative to its predecessors. The average 

time taken for training the model on YOLOv9 was 

recorded to be 0.330 hours whereas the same took 0.538 

hours for training on the YOLOv7 model. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Fig. 4. mAP results for (a) foggy weather, (b) heavy rain, (c) sandstorm, (d) heavy snow. 

 

5. CONCLUSION AND FUTURE SCOPE 

The research explored the potential of combining feature 

similarity grouping with ESRGAN to improve object 

recognition in difficult weather conditions for self-

driving vehicles. It was noticed that a combination of 

targeted contrast enhancement and upscaling reveals 

more crucial details abstracted in the image due to noise. 

This was especially critical for adverse weather 

conditions where safety and reliability were of utmost 

importance. The common issues faced in object 

detection in bad weather conditions included light 

scattering, haze and low range vision.  While the 

credibility and efficacy of deep learning-based 

algorithms for image enhancement have gone through 

rigorous testing, they might introduce a bias if the 

dataset is not diverse leading to poor performance in 

real-world scenarios. Hence the method of non-deep 

learning technique was implemented. It is also worth 

mentioning that a robust state-of-the-art object 

recognition algorithm, YOLOv9 was used in the 

proposed model. The approach of implementing an 

adverse weather dataset on YOLOv9 was a novelty. 

While YOLOv9 is still in its primitive stage, this work 

showed promising results in the field of object detection 

while leveraging its reversible function to reduce 

gradient loss. Hence, this paper aimed to reach human 

like perception levels in self-driving vehicles while 

navigating through challenging driving environments. 

While significant contributions were made, there 

remains room for further research. The computational 

costs saved in the operation of this methodology can 
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also serve as the basis of autonomous driving systems 

with resource constraints like EVs where efficient 

battery consumption is an important function of 

operation. The paper further initiates more research to 

be done in the field of conventional image enhancement 

techniques with methods like similarity-based contrast 

enhancement as used in this work. This can ensure 

ADAS systems to be better equipped to deal with 

unforeseen driving conditions. This work can be further 

expanded to video enhancement technologies. It can 

serve as the turning point in the field of object detection 

as videos store more temporal information regarding 

driving scenes than images. Also, testing on real-world 

video clips can be a better way of analyzing the model's 

efficacy in real-world driving scenarios. Research on 

image enhancement methods that are unsupervised is 

another topic that needs more future work. This can 

enable models to effectively learn from data that is 

unlabeled or has very few labels which can make them 

more practical even for real-world usage. Much work 

also needs to be done on developing methods that can 

better explain the reasoning behind decisions taken by 

the ADAS. Trust is an important factor when it comes to 

autonomous vehicles hence work must be initiated in the 

direction of building white-box methods to build 

consumer trust. 

By addressing the various challenges and future 

studies mentioned above, it can be concluded that image 

enhancement object detection models have the potential 

to bring significant improvements in the fields of self-

driving vehicles that operate in dynamic and difficult 

weather conditions. 
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