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Abstract –PV and wind electricity are used in distributed generation (DG) systems for sustainability and 

decentralisation. Wind, solar, and battery systems can provide energy storage and complementary generating 

profiles. Renewable resources are unpredictable, making modelling and controlling difficult and limiting 

performance. Traditional prediction, optimisation, and control methods are inferior to AI. This critical analysis 

examines AI-based modelling and control methods for small scale wind-photovoltaic battery distributed generating 

systems. This paper objectively evaluates AI approaches strengths and weaknesses and discusses their practical 

applications in energy flow optimisation and renewable resource variability. Oversight is necessary for those 

implementing AI solutions and researchers making breakthroughs. The evidence presented here demonstrates that 

artificial intelligence can potentially improve distributed energy systems' efficiency, dependability, and sustainability. 

 

Keywords – Distributed Generation, Renewable Energy Integration, Wind-PV-Battery Systems, Artificial 

Intelligence (AI), AI-Based Modelling and Control. 
 

11. INTRODUCTION 

Distributed generation (DG) produces energy locally, 

near consumers, unlike large-scale power plants [1]. 

Transmission loss reduction, energy security, and 

climate change urgency have driven dispersed 

generation's growth [2]. The spike can be attributed to 

renewable energy sources such as solar photovoltaics 

and wind power. This shift is a result of a number of 

factors, including environmental advantages, decreased 

costs, and technological advancements [3, 4]. Your 

contributions, as electrical engineers, researchers, and 

academics, are absolutely necessary for the development 

of DG systems. Integrating renewable sources requires 

sophisticated energy management to balance prices, 

reliability, and system longevity. Strategies must 

optimize energy dispatch between sources, battery 

storage, and variable load demand [3, 5] DG systems are 

beneficial when wind and solar photovoltaics are used, 

but their power production fluctuation makes integration 

difficult [5]. Accurate power forecasting is needed 

because weather patterns affect solar irradiance and 

wind speed, which affect system stability [1, 5]. 

Short-term and medium-term generation (wind and 

solar) and load projections are needed for system 

reliability [2]. Renewable energy integration is 

complicated, but AI, especially machine learning, can 

help. AI excels in modeling complicated nonlinear 

systems with uncertainty, which are common in wind-

PV-battery systems [6]. AI models can adapt to 

changing weather and system dynamics by learning 

from prior data, enhancing forecasting accuracy [6, 7]. 
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AI's capacity to solve complicated optimization issues 

improves energy management and control, improving 

system performance and cost [8]. AI has significant 

potential to transform variable renewable DG systems. 

Modelling and controlling a hybrid solar-wind 

microgrid was extensively studied. It used a Genetic 

Algorithm-Adaptive Neuro-Fuzzy Inference System 

(GA-ANFIS) to adjust voltage during power generation 

variations [9]. A Simulink Case Study Model utilising 

mathematical equations and a Transfer Function model 

using layered voltage-current loops are shown [10]. 

Simulation experiments [11] show that the GA-ANFIS 

controller optimises converter outputs via MPPT. This 

approach outperforms SSR-P&O and PID controllers. 

This work helps with the intermittency problems 

associated with wind and solar photovoltaic power 

sources. Its sophisticated control mechanism may 

improve the microgrid's stability and efficiency [12]. To 

achieve better performance, research may replace the 

GA-ANFIS control system with a hybrid controller 

incorporating AI algorithms in the future. When it 

comes to the construction of microgrids for renewable 

energy, the text places emphasis on precise modelling 

and intelligent control systems [13]. 

The Figure 1 shows a schematic diagram of a 

hybrid wind-PV-battery system. It illustrates the 

integration of PV modules and wind turbines through 

DC/DC converters connected to a DC bus, with a 

DC/AC inverter, battery charger, and battery bank 

feeding an AC load. The comparative Table 1 presents 

key features of wind, PV, and battery components in 

distributed generation systems, highlighting their 

resource types, weather dependence, power fluctuation 

characteristics, land use requirements, maintenance 

needs, costs, technology maturity, optimal applications, 

and environmental impacts. 
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Fig. 1. A simple schematic of a wind-PV-battery system. 

 

Table 1. Comparative chart for wind-PV-battery distributed generation. 

Feature Wind Photovoltaic (PV) Battery References 

Resource Wind speed Solar radiation Chemical reaction  [32], [33] 

Reliance on 

Weather 
Highly dependent Highly dependent 

Not dependent on weather 

(releases stored energy) 
 [34] 

Power Fluctuation High fluctuation 
High fluctuation during 

sunrise/sunset 

Steady power output (based on 

discharge rate) 
[35] 

Land Use Requires open space Requires open space Relatively compact [36] 

Maintenance 
Requires regular 

maintenance 

Requires minimal 

maintenance 

Requires maintenance for 

longevity 
[37],[38] 

Cost 
Moderate upfront 

cost 
Moderate upfront cost High upfront cost [39] 

Maturity of 

Technology 

Well-established 

technology 

Well-established 

technology 
Rapidly developing technology [40] 

Best Suited for 
Areas with 

consistent winds 

Areas with good solar 

insolation 
Energy storage and peak shaving [41] 

Environmental 

Impact 

Low emissions, 

some visual impact 

Low emissions, 

minimal land impact 

No emissions, potential for 

recycling concerns 
[42] 

 

 

Chart-1 Global Energy Sources Utilization [31]. 

http://www.rericjournal.ait.ac.th/
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Table-2. Comparative control techniques for wind-PV-battery distributed generation. 

Control Technique Function Advantages Disadvantages Suitable for 
Refere

nces 

Maximum Power 

Point Tracking 

(MPPT) 

Optimizes power 

extraction from wind 

turbine and PV system 

Maximises energy 

harvest from 

renewable sources 

Increased complexity Wind Turbines 

(Individual) 

 

[34], 

[37] 

Droop Control Maintains power 

sharing and frequency 

stability 

Simple and 

decentralised 

control 

May not achieve 

perfect power-sharing 

under all conditions 

Wind and PV 

integrated systems 

(grid-connected) 

[36] 

Proportional-

Integral (PI) 

Control 

Regulates DC link 

voltage and power flow 

Robust and widely 

used 

Tuning can be 

complex 

Battery storage [41] 

Fuzzy Logic 

Control 

Adapts to changing 

system dynamics 

Handles non-linear 

behavior effectively 

Requires expertise in 

fuzzy logic design 

Wind and PV 

integrated systems 

(grid-connected) 

with varying 

weather 

conditions 

[37] 

Centralized Control Provides coordinated 

control of all distributed 

energy resources 

 Optimal system-

wide performance 

Single point of 

failure, complex 

communication 

infrastructure 

Large Wind-PV-

Battery 

microgrids 

[42] 

Decentralized 

Control 

Independent control of 

individual resources 

with limited 

communication 

Reliable and 

scalable for large 

systems 

May not achieve 

optimal overall 

performance 

Wind farms with 

multiple turbines 

[35] 

 

Chart-1 illustrates the historical utilization trends 

of global energy sources from 1800 to 2022, showing 

the evolution of wind, hydropower, nuclear, natural gas, 

oil, coal, and traditional biomass consumption, with 

fossil fuels demonstrating significant growth in recent 

decades. 

The Table-2 presents various control techniques for 

wind-PV-battery systems, comparing MPPT, droop 

control, PI control, fuzzy logic, centralized, and 

decentralized approaches, detailing their functions, 

advantages, disadvantages, and suitable applications for 

distributed generation management. 

2. AI BASED MODELLING TECHNIQUES 

2.1 Forecasting Power Output 

To optimize decision-making for energy management 

and control within wind-photovoltaic-battery distributed 

generation systems [14], it is essential to emphasise the 

vital role that accurate wind and solar power forecasts 

play. Improved forecasts directly influence elements 

such as the scheduling of cost-effective resources, the 

management of batteries, and the grid's stability [15]. 

For the Wind Speed Forecasting Neural Networks 

(ANNs, RNNs) Predict wind speed at varying time 

horizons using past wind data, weather patterns, and 

potentially numerical weather prediction (NWP) data. 

Fuzzy Logic Handle uncertainty and variability in 

wind speed, especially in complex terrain or rapidly 

changing weather conditions. 

Solar Irradiance Forecasting is a critical area of 

research, especially in green energy. Scientists aim to 

predict daily solar irradiance by leveraging deep-

learning methodologies and historical solar radiation 

data. These models extract patterns and relationships 

from multi-site data, enabling accurate predictions. 

Bidirectional long-short-term memory (LSTM) and 

attention-based LSTM models have shown promise in 

forecasting solar irradiance. 

 

 

Fig. 2. Illustration of AI-based modelling techniques. 

 

Figure 2 illustrates AI-based modeling techniques 

for renewable energy systems, categorizing them into 

forecasting power output and energy management 

systems. It outlines specific applications like solar 

irradiance and wind speed forecasting, along with 

various AI methods including fuzzy logic, neural 

networks, and reinforcement learning for optimal system 

control. 

ANNs and CNNs Predict solar irradiance based on 

cloud cover, time of day, and historical weather data. 

http://www.rericjournal.ait.ac.th/
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Image-based forecasting using CNNs can be helpful for 

cloud pattern analysis. 

Load Demand Forecasting by ANNs and LSTMs 

predicts energy demand patterns considering historical 

consumption, time of day, day of week, and other 

influencing factors. 

Energy Management Systems (EMS) 

Reinforcement Learning Optimise the dispatch of wind 

and solar power, battery charging/discharging, and 

power flow to ensure reliable and cost-effective real-

time operation. 

Model Predictive Control (MPC) Handle short-

term forecasting and control, adapting the system to 

changing power demand and generation conditions. 

Component Sizing and Placement Metaheuristics 

(Genetic Algorithms, Particle Swarm Optimization) help 

find optimal sizes and locations for wind turbines, solar 

panels, and batteries to maximise energy output and 

economic benefits. 

2.2 System Optimization 

(a) Machine Learning (ML) 

Accurate wind and solar power output forecasting is 

crucial for effective decision-making and stability in 

distributed generation (DG) systems [9]. Machine 

learning (ML), especially supervised learning, has 

emerged as a powerful tool for addressing this 

challenge. In supervised learning, AI models are trained 

on historical datasets that include weather variables 

(wind speed, solar irradiance, temperature, etc.), past 

power generation patterns, and corresponding load 

demand. The models analyse this data to discover 

complex relationships, enabling them to predict future 

power production [16]. 

 

 

Fig. 3. Illustration of system optimization. 

 

Figure 3 depicts the hierarchical structure of 

system optimization techniques, branching into three 

main categories: Machine Learning (ML), Component 

Sizing and Placement, and Deep Learning. ML further 

subdivides into SVMs, ANNs, and Decision 

Trees/Random Forests, while Deep Learning includes 

DNNs and CNNs. 

Artificial neural networks (ANNs) capture complex 

and nonlinear data correlations well due to their 

biological brain structure. This makes them valuable in 

weather and power systems, which are often dynamic 

and unpredictable. In weather forecasting, artificial 

neural networks (ANNs) can predict the chaotic 

interaction of temperature, pressure, and humidity. This 

helps ANNs predict patterns that linear models struggle 

with. Power systems use artificial neural networks 

(ANNs) to control load demand, generator behavior, and 

renewable source effects on grid stability. Because they 

can learn from data without mathematical formulas, 

artificial neural networks (ANNs) can help us model and 

manage these complex and ever-changing systems [17]. 

 
Table 3. Different optimization techniques for wind-PV- battery distributed generation. 

Technique Description Advantages Disadvantages 

Linear 

Programming [43] 

Solves problems with linear 

objective functions and 

constraints. 

Efficient for well-defined 

problems, provides 

guaranteed optimal 

solution. 

May struggle with complex 

non-linear problems, limited 

scalability for large system 

 

s. 
Dynamic 

Programming [44] 

Breaks down complex 

problems into smaller 

subproblems, solving them 

sequentially. 

Can handle complex 

problems with time-varying 

dynamics, guarantees 

optimal solution. 

Computationally expensive for 

large problems with many 

stages. 

Heuristic 

Techniques 

[45] 

Use iterative approaches to 

find good, but not 

necessarily optimal, 

solutions. 

Fast and efficient, 

adaptable to complex 

problems, good for real-

time applications. 

No guarantee of optimality, 

solution quality can vary 

depending on the algorithm. 

Machine Learning 

[46] 

Utilizes algorithms that 

learn from data to make 

optimization decisions. 

Can handle highly non-

linear problems, good at 

adapting to changing 

system dynamics. 

Requires large amounts of 

training data, computational 

cost for training models. 
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Fig. 4. Artificial neural networks. 

Figure 4 depicts a basic neural network architecture 

with three layers: an input layer containing three nodes, 

a hidden layer with four nodes, and an output layer with 

two nodes, all interconnected through weighted 

connections. 

Support Vector Machines SVMs are well-known 

for their effectiveness on datasets that are both high-

dimensional and compact in size. The separation of data 

classes is improved by decision boundaries, also known 

as hyperplanes. As a result, overfitting, which is a 

common problem when there is inadequate training data, 

is reduced. 

SVMs, which stand for support vector machines, 

are also capable of processing high-dimensional data 

that has a variety of attributes. Researchers are able to 

implicitly extend data into higher dimensions by 

utilizing "kernels," which allows them to locate the most 

effective separation borders. Because of its ability to 

process a large number of input variables, Support 

Vector Machines (SVMs) are an excellent choice for 

analyzing weather and power systems. Twelve. 

Decision Trees, Random Forests decision trees are 

flowchart-like models that are interpretable. Hierarchical 

feature questions divided data into subsets. This 

framework shows the decision-making process, making 

classification and prediction explanations clear. Random 

forests, decision tree ensembles, retain interpretability. 

Even though they are more intricate than individual 

trees, they reveal the relevance of features, which are the 

variables that most influence model decisions. 

Interpretability is especially important when decisions 

have real-world consequences since it helps understand 

the model's logic and trust its outcomes [18]. 

(b) Deep Learning 

Deep learning (DL), a subset of machine learning, has 

improved wind-photovoltaic-battery system prediction. 

The main feature of this system is its ability to 

automatically extract complex and useful properties 

from raw time-series data. This includes historical wind 

speed and temperature oscillations, electricity generation 

trends, and load demand variations. 

Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory Networks (LSTMs) are examples 

of deep learning models. These models comprise 

numerous processing layers that develop hierarchical 

representations of the data. Automating the process of 

feature extraction and doing away with laborious manual 

engineering are two primary benefits. Identifies complex 

nonlinear patterns that are present inside time-series 

documents. Compared to established forecasting models, 

it frequently performs better [19]. 

Deep Neural Networks (DNNs) Inspired by the 

structure of the human brain, DNNs use layers of 

interconnected "neurons" to learn complex patterns 

within data.  

Convolutional Neural Networks (CNNs) are 

specialised for image processing. They extract features 

from images using filters and are highly successful in 

computer vision tasks. CNNs use 'filters' that slide over 

the input data (e.g., a weather map), identifying local 

patterns and spatial relationships [20].  

 

 

Fig. 5. Convolutional neural network 

Recurrent Neural Networks (RNNs) are designed 

to process sequential data (e.g., text, time series). RNNs 

have a "memory" element, allowing them to use 

information from previous inputs.  

 
Fig. 6. Feed-forward neural network. 

(c) Component Sizing and Placement 

Metaheuristics (Genetic Algorithms, Particle 

Swarm Optimization) help find optimal sizes and 

locations for wind turbines, solar panels, and batteries to 

maximise energy output and economic benefits. 

3. AI-BASED CONTROL STRATEGIES 

The inherent variability of wind and solar power and 

fluctuating load demands necessitate intelligent control 

strategies to ensure a distributed generation system's 

reliable and efficient operation. AI-based techniques 

offer adaptability, self-learning capabilities, and 

optimisation potential to address these challenges. 

http://www.rericjournal.ait.ac.th/
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 Energy Management and Optimization by 

reinforcement Learning (RL) agents interact with the 

power system environment and learn from rewards to 

optimise long-term energy dispatch and battery 

management decision-making. Studies have 

demonstrated the effectiveness of RL for optimising 

battery charging/discharging schedules and overall 

energy flow in microgrids [21, 22]. 

Model Predictive Control (MPC) leverages short-

term forecasts of renewable generation and load demand 

to proactively optimise control actions over a receding 

horizon [23]. It is particularly suitable for systems with 

nonlinearities and operational constraints. 

Grid Stability and Power Quality Control of Fuzzy 

logic controllers effectively handle uncertainties and 

nonlinearities associated with renewable energy 

integration, maintaining voltage and frequency stability 

within allowable limits [24]. 

Neural Network-based Controllers (ANNs) can 

learn complex relationships between system variables, 

facilitating adaptive control of power converters and 

compensation equipment to improve power quality 

under varying conditions [25]. 

4. ADVANCED TECHNIQUES AND FUTURE 

DIRECTIONS 

Hybrid AI Models combining the strengths of different 

AI techniques (e.g., fuzzy logic for uncertainty and 

neural networks for forecasting) can lead to more robust 

control strategies. Metaheuristic Optimization is 

evolutionary algorithms, such as Genetic Algorithms, 

can optimise AI models' controller and hyper parameters 

to improve system performance. Distributed control 

architectures as distributed generation systems scale, 

hierarchical and decentralised control strategies utilising 

AI for local and system-wide coordination become 

essential. 

 

Table 4. Estimated global energy losses. 

Energy 

Sources 

Optimization 

Loss (%) 

Nonlinear load 

loss (%) 

Total Loss 

(%) 

Fossil Fuels 8 4 12 

Hydropower 3 2 5 

Nuclear 5 1 6 

Solar 9 6 15 

Wind 12 5 17 

 

 

5. CHALLENGES AND FUTURE DIRECTIONS 

While AI-based techniques offer significant promise for 

optimising renewable energy systems, several 

challenges and potential areas for future research 

remain: 

Data availability and quality success of AI models 

heavily depends on access to large amounts of diverse, 

high-quality data encompassing weather patterns, power 

output, load demand, and system component behaviour 

[26]. Real-world datasets may contain noise, missing 

values, and inconsistencies. Collaboration within the 

industry can facilitate the creation of larger, more 

comprehensive datasets. Techniques like GANs can 

generate realistic scenarios to supplement limited real-

world data [27]. 

Computational Complexity and Real-Time  

Implementation In advanced deep learning models and 

optimisation algorithms can be computationally 

demanding [28]. Balancing model accuracy and 

complexity is crucial for real-time control. Reducing 

model size for faster inference without sacrificing 

performance. Distributing intelligence closer to where 

data is generated can reduce computational burden and 

latency. 

Explainability and Trust Black-box AI models may 

lack transparency in their decision-making processes, 

hindering trust in critical power system operations [29]. 

Methods to understand the reasoning behind AI model 

predictions and control actions are being developed. 

Expert knowledge and oversight are being incorporated 

in conjunction with AI-based systems for safer 

operation. 

Resilience to Cyberattacks AI models can be 

susceptible to attacks by adversaries, which could result 

in system instability. Model robustness can be improved 

by training on instances intended to trick artificial 

intelligence systems [30]. Using artificial intelligence-

based control in conjunction with effective cybersecurity 

measures to protect the infrastructure of power systems. 

Scaling and Coordination in Large-Scale 

Microgrids Implementing scalable and coordinated 

control algorithms is necessary for distributed 

generation systems involving a large number of energy 

sources, storage units, and loads. Investigate hierarchical 

control architectures that allow artificial intelligence 

agents to optimize at both the local and system-wide 

scales. To accomplish the objectives of global 

optimization, it is necessary to investigate cooperative 

learning strategies for various AI controllers. 

After finalising this survey, we have found some 

research gap and these are as: 

❖ In a real-world implementation, no research 

addresses data quality and hardware limits when 

http://www.rericjournal.ait.ac.th/
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transitioning AI models from simulation to large-scale 

grids. 

❖ Uncertainty modelling reviews could underline the 

necessity for AI methods that explicitly handle 

renewable energy sources' uncertainty and variability. 

❖ Hybrid AI approaches combining AI methods like 

fuzzy logic and neural networks may improve accuracy 

and robustness. 

❖ Cybersecurity AI-controlled systems' cybersecurity 

threats are neglected, making dispersed power grids 

vulnerable. 

6. CONCLUSION 

This research emphasises the revolutionary potential of 

artificial intelligence (AI) in improving the modelling 

and control of distributed generation systems, 

particularly those that use wind, photovoltaic (PV), and 

battery storage. This article discusses the merits of 

artificial intelligence approaches such as artificial neural 

networks (ANNs), support vector machines (SVMs), 

and deep learning for the purpose of improving 

prediction accuracy and optimizing resource 

management efficiency. In the publication, the authors 

express optimism that ongoing research will further 

develop distributed generating systems powered by 

artificial intelligence, boosting the systems 

dependability and efficiency. 

REFERENCES 

[1] M. S. Mahmoud and M.S.A. Moteleb, "Distributed 

generation: concepts, benefits, technologies, and 

challenges," in Distributed Generation Systems, 

2018. 

[2] T. Ackermann, G. Andersson, and L. Söder, 

"Distributed generation: a definition," Elect. Power 

Syst. Res., vol. 57, no. 3, pp. 195-204, 2001. 

[3] International Renewable Energy Agency (IRENA), 

Renewable Power Generation Costs in 2021, Abu 

Dhabi, 2022. 

[4] R. Belfkira, C. Zhang, and G. Barakat, "Optimal 

sizing study of hybrid wind/PV/diesel power 

generation unit," Sol. Energy, vol. 85, no. 1, pp. 

100-110, 2011. 

[5] Khalid, M., "Smart grids and renewable energy 

systems: Perspectives and grid integration 

challenges," Energy Strategy Rev., vol. 51, p. 

101299, 2024. 

[6] S. S. Refaat, H. Abu-Rub, M. S. Saad, and M. 

Abdel-Fadil, "Artificial intelligence techniques in 

power systems: A review," in Proc. 13th Int. Conf. 

Electr. Eng./Electron., Comput., Telecommun. Inf. 

Technol. (ECTI-CON), 2021. 

[7] A. M. Abd Elaziz and A. M. Ramadan, "Artificial 

Intelligence techniques in the electric power sector: 

A comprehensive review," Ain Shams Eng. J., 

2023. 

[8] Z. Zhang, D. Zhang, and R. C. Qiu, "Deep 

reinforcement learning for power systems: A 

Comprehensive Survey," IEEE Access, vol. 8, 

2020. 

[9] E. N. Odonkor, P. M. Moses, and A. O. Akumu, 

"Intelligent ANFIS-Based Distributed Generators 

Energy Control and Power Dispatch of Grid-

Connected Microgrids Integrated into Distribution 

Network." 

[10] Nishad, D.K., Tiwari, A.N., Khalid, S. et al. AI 

based UPQC control technique for power quality 

optimization of railway transportation systems. Sci 

Rep 14, 17935 (2024). 

https://doi.org/10.1038/s41598-024-68575-5 

[11] L. A. Aloo, P. K. Kihato, S. I. Kamau, and R. S. 

Orenge, "Modeling and control of a photovoltaic-

wind hybrid microgrid system using GA-ANFIS," 

Heliyon, vol. 9, no. 4, 2023. 

[12] S. Ahmad, M. Shafiullah, C. B. Ahmed, and M. 

Alowaifeer, "A review of microgrid energy 

management and control strategies," IEEE Access, 

vol. 11, pp. 21729-21757, 2023. 

[13] A. R. Taylor, "Performance Analysis Of Hybrid 

Ai-Based Technique For Maximum Power Point 

Tracking In Solar Energy System Applications," 

2023. 

[14] X. Kong et al., "Multi-scale, hierarchical and 

distributed coordination mechanisms for future grid 

resilience: a review," CPSS Trans. Power Electron. 

Appl., vol. 5, no. 4, pp. 308-321, 2020. 

[15]  A. Tascikaraoglu, O. Erdinc, M. Uzunoglu, and A. 

Y. Karakas, "An adaptive load dispatching and 

forecasting strategy for a virtual power plant 

including renewable energy conversion units," 

Appl. Energy, vol. 119, pp. 445–453, 2014. 

[16] M. S. Mahmoud and M.S.A. Moteleb, "Distributed 

generation: concepts, benefits, technologies, and 

challenges," in Distributed Generation Systems, 

2018. 

[17] Q. Wang et al., "Short-term photovoltaic power 

generation interval prediction method based on 

support vector machine," Prot. Control Mod. 

Power Syst., vol. 6, no. 1, 2021. 

[18] J. R. Quinlan, "Induction of decision trees," Mach. 

Learn., vol. 1, no. 1, pp. 81–106, 1986. 

[19] Y. Wang et al., "Multi-spatial-scale deep learning 

for wind speed forecasting," IEEE Trans. Sustain. 

Energy, 2022. 

[20] F. A. Gers, J. Schmidhuber, and F. Cummins, 

"Learning to Forget: Continual Prediction with 

LSTM," Neural Comput., vol. 12, no. 10, pp. 

2451–2471, 2000. 

[21] Z. Zhang, D. Zhang, and R. C. Qiu, "Deep 

reinforcement learning for power system 

applications: An overview," CSEE J. Power 

Energy Syst., vol. 7, no. 1, pp. 213-225, 2021. 

[22] V. François-Lavet, P. Henderson, R. Islam, M. G. 

Bellemare, and J. Pineau, "An introduction to deep 

reinforcement learning," Found. Trends Mach. 

Learn., vol. 11, no. 3-4, pp. 219–354, 2016. 

http://www.rericjournal.ait.ac.th/
https://doi.org/10.1038/s41598-024-68575-5


 Panday A.K., Tiwari P., and Nishad D.K. / International Energy Journal 25 (2025) Special Issue 1A (171 – 178) 

©2025. Published by RERIC in International Energy Journal (IEJ), selection and/or peer-reviewed under the responsibility of the Organizers of the “International 

Conference on Energy Transition and Innovation in Green Technology (ICETIGT 2024)” and the Guest Editors: Dr. Prabhakar Tiwari and Dr. Shekhar Yadav of 

Madan Mohan Malaviya University of Technology, Gorakhpur, India. 

www.rericjournal.ait.ac.th 
 

178 

[23]  E. F. Camacho and C. Bordons, Model predictive 

control. Springer Science & Business Media, 2007. 

[24]  P. K. Dash, M. Padhee, and S. K. Bhoi, "A hybrid 

controller for power quality improvement and grid 

synchronisation of a wind-PV-battery-based 

distributed system," Eng. Sci. Technol. Int. J., vol. 

21, no. 6, pp. 1183–1196, 2018. 

[25] L. Yin, T. Yu, B. Yang, and X. Zhang, "A new 

radial basis function neural network control with 

load fluctuation suppression for shipboard power 

systems," Trans. Inst. Meas. Control, vol. 39, no. 7, 

pp. 1013–1025, 2017. 

[26]  Y. Zhou, S. Zheng, and G. Zhang, "Artificial 

intelligence-based intelligent control and energy 

management for complex energy systems: A 

literature review," Front. Energy Res., vol. 10, p. 

1013885, 2022. 

[27]   K. Wang et al., "Generative adversarial networks: 

introduction and outlook," IEEE/ACM Trans. 

Audio, Speech, Lang. Process., vol. 25, no. 6, pp. 

1118-1135, 2017. 

[28]  Z. Zhang, D. Zhang, and R. C. Qiu, "Deep 

reinforcement learning for power system 

applications: An overview," CSEE J. Power 

Energy Syst., vol. 7, no. 1, pp. 213-225, 2021. 

[29]  A. B. Arrieta et al., "Explainable Artificial 

Intelligence (XAI): Concepts, taxonomies, 

opportunities and challenges toward responsible 

AI," Inf. Fusion, vol. 58, pp. 82-115, 2020. 

[30]  Demontis et al., "Yes, machine learning can be 

more secure! A case study on android malware 

detection," IEEE Trans. Dependable Secure 

Comput., vol. 16, no. 4, pp. 711-724, 2019. 

[31]  H. Ritchie, P. Rosado, and M. Roser, "Energy 

Production and Consumption," Our World in Data, 

Feb. 26, 2024. [Online]. Available: 

https://ourworldindata.org/energy-production-

consumption 

[32] S. A. Kalogirou, Solar energy engineering: 

processes and systems. Elsevier, 2023. 

[33] Nishad, D.K., Tiwari, A.N., Khalid, S. et al. Power 

quality solutions for rail transport using AI-based 

unified power quality conditioners. Discov Appl 

Sci 6, 651 (2024). https://doi.org/10.1007/s42452-

024-06372-5. 

[34] Y. Yang, S. Bremner, C. Menictas, and M. Kay, 

"Battery energy storage system size determination 

in renewable energy systems: A review," Renew. 

Sustain. Energy Rev., vol. 91, pp. 109-125, 2018. 

[35] H. Shi et al., "Long-Term Solar Power Time-Series 

Data Generation Method Based on Generative 

Adversarial Networks and Sunrise–Sunset Time 

Correction," Sustainability, vol. 15, no. 20, p. 

14920, 2023. 

[36] E. O'Shaughnessy, R. Wiser, B. Hoen, J. Rand, and 

S. Elmallah, "Drivers and energy justice 

implications of renewable energy project siting in 

the United States," J. Environ. Policy Plan., vol. 

25, no. 3, pp. 258-272, 2023. 

[37] S. Sheng and R. O'Connor, "Reliability of wind 

turbines," in Wind Energy Engineering, Academic 

Press, 2023, pp. 195-211. 

[38] E. Singh, S. S. Afshari, and X. Liang, "Wind 

Turbine Optimal Preventive Maintenance 

Scheduling Using Fibonacci Search and Genetic 

Algorithm," J. Dyn., Monit. Diagnostics, vol. 2, no. 

3, pp. 157-169, 2023. 

[39]  A. Chatterjee and B. Banerjee, "Cost-Effective 

Hybrid Wind-Photovoltaic Generation System for 

Isolated Critical Loads: A Case Study," J. Electron. 

Electr. Eng., pp. 274-286, 2023. 

[40] S. Rehman et al., "A review of energy extraction 

from wind and ocean: Technologies, merits, 

efficiencies, and cost," Ocean Eng., vol. 267, p. 

113192, 2023. 

[41]   F. Wu et al., "A comprehensive evaluation of 

wind-PV-salt cavern-hydrogen energy storage and 

utilization system: A case study in Qianjiang salt 

cavern, China," Energy Convers. Manag., vol. 277, 

p. 116633, 2023. 

[42] P. Wang et al., "Peak shaving auxiliary service 

analysis for the photovoltaic and concentrating 

solar power hybrid system under the planning-

dispatch optimization framework," Energy 

Convers. Manag., vol. 295, p. 117609, 2023. 

[43] Singh, R., Nishad, D.K., Khalid, S. et al. A review 

of the application of fuzzy mathematical algorithm-

based approach in autonomous vehicles and 

drones. Int J Intell Robot Appl (2024). 

https://doi.org/10.1007/s41315-024-00385-4 

[44]  J. Mahmoudimehr and L. Loghmani, "Optimal 

management of a solar power plant equipped with 

a thermal energy storage system by using dynamic 

programming method," Proc. Inst. Mech. Eng. A, J. 

Power Energy, vol. 230, no. 2, pp. 219-233, 2016. 

[45] N. Kirchner-Bossi and F. Porté-Agel, "Wind farm 

area shape optimization using newly developed 

multi-objective evolutionary algorithms," Energies, 

vol. 14, no. 14, p. 4185, 2021. 

[46]  S. Ozturk, "Forecasting Wind Turbine Failures 

and Associated Costs: Investigating Failure 

Causes, Effects and Criticalities, Modeling 

Reliability and Predicting Time-to-Failure, Time-

to-Repair and Cost of Failures for Wind Turbines 

Using Reliability Methods and Machine Learning 

Techniques," Ph.D. dissertation, Columbia Univ., 

2019. 

 

 

 

 

 

http://www.rericjournal.ait.ac.th/
https://doi.org/10.1007/s41315-024-00385-4

