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Abstract -  Time series analysis of relative global solar radiation from four stations in the Kingdom of Jordan, namely
Amman, Aqaba, Dier Alla and Irbid have been undertaken. The deterministic component is removed by double
differencing. The autocorrelation and partial autocorrelation functions of the residuals indicate autoregressive (AR)
process. The coefficients of the autoregressive process and statistical indicators are estimated using the program
PEST. The autoregressive representation of the residual series is justified by analyzing the autocorrelation and partial
autocorrelation functions of the resulting white noise. To confirm that the residuals are observed values of independent
and identically distributed random variables, Ljung-Box and McLeod-Li statistical test are applied to the residual
series.
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1. INTRODUCTION

Time series analysis of solar radiation data is useful in
predicting long-term average performance of solar energy
system. Once a time series model is deduced for a set of
regularly recorded observations, it can be used to generate
future values as long as the statistical properties of the
data remain the same. For solar radiation data this condition
will always be satisfied.

Time series models find many applications in the field
of engineering, science, sociology, economics, etc. It can
be used to simplify description of data. Other applications
of time series include, (i) separation (or filtering) of noise
from signals, (ii) prediction of future values, (iii) testing
hypothesis, (iv) prediction of time series from observation
of another and (v) simulation studies.

In this paper, we apply the theory of time series to
daily global solar radiation data from four stations in the
Kingdom of Jordan. Prediction of future values is useful
when a solar energy system is to be set up and its long-
term performance needs to be evaluated. In the next section
the formalism of time series is presented. The data is first
removed of deterministic components using differencing
technique. The residuals are subject to an algorithm to
determine the order of the process. Both statistical and
graphical analyses are applied to verify the dependent
property of the series.

2. PREVIOUS  WORK

Much work has been dedicated to the mathematical
representation of the meteorological parameters as an
important application in applied science. The data that were
treated may consist of hourly or daily events.

Time series of 20 years of daily solar radiation data
from four Italian stations were analyzed on a statistical
basic by Amato et. al (1986). It was shown that the radiation
sequence was not stationary. The stochastic component
followed a first order Markov model.

Boland (1995) devised a method to identify important
cyclical components in solar radiation and ambient
temperature data. After the contributions of the steady
periodic part were removed the residuals of the time series
were analyzed. It was shown that the daily solar radiation
residuals were a first order autoregressive process while
the daily average ambient temperature residuals were a third
order autoregressive process.

Box-Jenkins approach was applied to daily solar
radiation from four different locations in Malaysia by
Sulaiman et al. (1997). The deterministic annual component
was obtained using Fourier analysis. The stochastic
component of the time series were fitted to three models i.e
AR(1), AR(2), ARMA(1,1).

3.     FORMALISM OF TIME SERIES PROCESS

The formalism of time series process can be found in a
number of publications such as Box et al (1994), Fuller (1996),
Kendal et al (1990), Pandit et. al (1983). In this work however
we will follow the approach of Brockwell (1996).

A time series model for the observed data {xt,,
t=0,±1,….} is a specification of the joint distributions of a
sequence of random variables {Xt, t=0,±1,….} of which {xt}
is postulated to be a realization.

For the time series {Xt} the mean function is given as:

where P is a probability distribution function of discrete
random variables.

A covariance function of {Xt} is given as:

for integers r, s, and t.
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It is assumed that the time series {Xt} shall have finite
second moment.

Loosely speaking, a time series {Xt} is said to be
stationary if it has statistical properties similar to those of
the ‘time-shifted’ series {Xt+h} for each integer h. It can be
shown that (Brockwell, 1996) stationary time series obey
the following conditions,

(i)  t)(xμ  is independent of t

(ii) t)h,t(x +γ  is independent of t for each h

If time series {Xt} is stationary, an autocovariance
function (ACVF) is defined as,

where γx depends only on the index h known as the lag.
Also, the autocorrelation function (ACF) of a

stationary time series {Xt} is defined as,

The ACVF and ACF provide a useful measure of the
degree of dependences between the values of a time series
at different times and for this reason play an important role
in the prediction of future values using past and present
values.

4.    THE  ARMA  PROCESS

If a stationary time series {Xt} satisfies the following
equation,

where {Zt} is a sequence of uncorrelated random
variables each with mean zero and finite variance, then it is
an autoregressive moving average process of order p and
q denoted by ARMA(p,q). The sequence of uncorrelated
random variables is referred to as white noise denoted by
WN(0,σ2) having mean zero and variance σ2. One important
type of white noise is the independent and identically
distr ibuted random sequence (Brockwell,  1996).
Independent and identically distributed noise plays an
important role as a building block for more complicated
time series models.

Equation (5) can be written in terms of the backward
shift operator B defined by:

In general,

Therefore, equation (5) can be written as,
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where,

and

The time series {Xt} is said to be an autoregressive
process of order p or AR(p) if θ (B) is equal to one and a
moving average process of order q or MA(q) if  φ (B) is
equal to one.

The stationarity of the ARMA(p,q) process {Xt} is
ensured when

In other words the zeros of the autoregressive
polynomial must all be greater than one in absolute value.

5.    THE SAMPLE ACF AND PACF

In practical problems we do not start with a model but with
observed data {x1,x2,…,xn}. To assess the degree of
dependence in the data and to select a model for the data
that reflects this, the sample autocorrelation (sample ACF)
and partial autocorrelation (sample PACF) functions are
used. If the data are realized values of a stationary time
series, then the sample ACF and PACF will provide with
estimates of the ACF and PACF of the model time series
{Xt}. These estimates may suggest which model is suitable
for representing the dependence in the data.

For the sample time series {xt, t=1,2,….n}
i) the sample mean is

ii) the sample autocovariance function is

iii) the sample autocorrelation function ACF is

iv) the sample partial autocorrelation function PACF is

with
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The ACF and PACF are used to estimate the type and
order of the process involved. As a rough guide, if the
sample ACF falls between the plotted bounds  1.96/√n for
lags h > q then an MA(q) model is suggested, while if the
sample PACF falls between the plotted bounds 1.96/√n
for lags h > p, then an AR(p) model is suggested.

6.    DETERMINISTIC  COMPONENTS

The treatment thus far has assumed that the time series is
stationary. In reality observed data are often made up of
deterministic and random components. The deterministic
observation may be the results of trend and periodic
contributions. A plot of the sample data will reveal the
deterministic components. For sample with substantial
periodic component the autocorrelation function will also
exhibit similar behavior with the same periodicity.

To subject the data to time series analysis, the
deterministic component must be removed giving rise to
the residuals. There are a number of methods of extracting
the deterministic components. Sulaiman et al (1997)
approximated the component with a Fourier series. In this
work we use the method of Box and Jenkins (1994) where a
differencing operator is applied to the original observed
data until the differenced observations resemble a realization
of some stationary time series

7.    ELIMINATION  BY  DIFFERENCING

Let {yt} be the sample series containing the deterministic
components. We define the lag-1 difference operator ∇
by:

where B is the backward shift operator defined previously.
A lag-j difference can be written as:

Observed data that are effectively differenced produce
residuals, thus,

8.    GOODNESS  OF  FIT

If there is no dependence between the residuals then they
can be regarded as observation of independent random
variables and there is no further modeling to be done except
to estimate their mean and variance. However, if there is
significant dependence between the residuals, then a more
complex stationary time series model must be found to
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account for the dependence. There exist simple tests to
check the hypothesis that the residuals are observed values
of independent and identically distributed random variables.

The sample autocorrelation function
About 95% of the sample autocorrelations of an

independent and identically distributed random variables
should fall between the bounds of ±1.96/ √n where n is the
total number of data points.

Ljung and Box test (Ljung and Box, 1978)
In the Ljung and Box test use is made of a statistic

defined as follows:

If h)(  Q 2
-1LB αχ>  where h)(2

-1 αχ  is the 1-α quantile
of the chi-squared distribution with h degrees of freedom
the independent and identically distributed random data
hypothesis is rejected.

McLeod and Li test (McLeod and Li, 1983)

The McLeod and Li statistics is defined as follows:

where )h(ˆ wwρ  is the sample autocorrelations of the
squared data. The hypothesis of the independent and
identically distributed normal data is then rejected at level

α if the observed value of Q̂  is larger than the (1−α)
quantile of the χ2(h) distribution.

9.    RESULTS  AND DISCUSSION

The data is analyzed using a computer program PEST
(Brockwell, 1996) using the formalism described earlier. The
program can be used to plot, analyze and transform time
series data. It can also be used to compute properties of
time series models and fit models to data.

∑ ρ+=
=

h

1j
LB

j)-(j)/(nˆ2)n(n Q (24)

k)-k)/(n(2)n(nQ̂
h

1k

2

ww
ˆ∑ ρ

=
+= (25)

Stations Latitude (N) Longitude (E) Elevation (m)
(b.s.l) 

 Deg Min Deg Min  
Amman 31 59 35 59 772 
Aqaba 29 33 35 00 51 
Dier Alla 31 13 35 37 -224 
Irbid 32 33 35 51 616 

Table 1. Geographical information on the stations used

Table 2. Number of data points and differencing lags used

Lag Stations Total 
number of 

data 
points 

First 
differencing 

Second 
differencing 

Number of 
data points 

after 
differencing

Amman 1826 366 192 1268 
Aqaba 730 365 179 186 
Dier Alla 366 180  186 
Irbid 730 365 179 186 
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The solar radiation time series {yt} are derived from
daily relative solar radiation data of four stations in the
Kingdom of Jordan. Information on these stations are given
Table 1. The relative data are obtained by taking the ratio of
the mean daily solar radiation data and the daily
extraterrestrial radiation given by Duffie and Beckman
(1991). The total number of data points used in the analysis
is given in Table 2. In Fig. 1, the plot of the relative global
solar radiation data against the number of data points for
Amman is shown. The plot clearly reveals the deterministic
components in a form of periodic variations. A differencing
analysis is then applied to the data with lag equals to the
approximate period of the seasonal components. The lags
used in the differencing analysis are given in Table 2. The
series of the differenced data of all the stations are again
plotted to determine the outcome. It is found that, except
for Dier Alla not all of the deterministic components are
satisfactorily removed. A second differencing is carried out
with lags given in Table 2.

The ACFs and PACFs of the residuals are then
determined using the PEST computer program. The ACF
for Amman is plotted in Fig. 2 and the PACF in Fig. 3.
Generally, there exists significant number of points that fall
outside the bounds of  1.96/√n. Thus, the residuals are not
generated by a sequence of white noise.

Fig. 1.  Plot of relative global solar radiation for Amman

Fig. 2. Plot of the autocorrelation function of the residual
for Amman

Fig. 3.  Plot of the partial autocorrelation function of the
residual for Amman

Table 3(a). Autoregressive coefficients for Amman

Table 3(b). Autoregressive coefficients for Aqaba

Order of  
coefficients,  

p 

AR  
coefficients, 

θp 

Ratio of oefficients 
 to 1.96*standard 

error 
1 0.395 7.01917 
2 0.010 0.01642 
3 0.046 0.77740 
4 -0.026 -0.43500 
5 -0.062 -0.98127 
6 -0.103 -0.17530 
7 0.073 1.30960 
8 -0.065 -1.12690 

Order of  
coefficients, 

p 

AR 
coefficients, 

θp 

Ratio of 
coefficients to 

 1.96*standard error 
1 0.422 3.00990 
2 -0.015 -0.09694 
3 -0.020 -0.13204 
4 0.022 0.140030 
5 0.088 0.57270 
6 -0.057 -0.37379 
7 0.038 0.24784 
8 0.018 0.12018 
9 -0.066 -0.43500 

10 -0.095 -0.62380 
11 0.067 0.44005 
12 -0.057 -0.37374 
13 -0.036 -0.23158 
14 0.031 0.20385 
15 -0.019 -0.12300 
16 -0.074 -0.48349 
17 0.120 0.78456 
18 -0.058 -0.37914 
19 0.074 0.47928 
20 0.049 0.32207 
21 -0.126 -0.82136 
22 -0.019 -0.12281 
23 -0.003 -0.02259 
24 0.004 0.02741 
25 -0.159 -1.22300 
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A model of the residual is then estimated using PEST
program. The coefficients of the AR(p) model and the
variance of the white noise are determined. The ratios
between the values of the parameters and 1.96 times the
standard error are also calculated. If these ratios are greater
than one in absolute value than it can be concluded that at
level of 0.05 the corresponding coefficients are different
from zero. The output of the PEST estimation are given in
Tables 3(a), 3(b), 3(c), 3(d). Based on these estimations, the
relative global solar radiation data can be described by the
following processes:

Xt=Zt+0.395Xt -1-0.062Xt -5+0.073Xt-7-0.065Xt-8 for Amman

Xt=Zt+0.422Xt -1-0.159Xt -25 for Aqaba

Xt=Zt+0.433Xt-1+0.214Xt -2 for Dier Alla

Xt=Zt+0.392Xt -1+0.202Xt -26 for Irbid

The ACFs and PACFs of the model are then calculated
together with the random test statistics. The ACF for Amman
is shown in Fig. 4 and the PACF in Fig. 5. In Table 4, we list
the test statistics for all the stations used in the analysis.
The ACFs and PACFs indicate white noise property with

almost all points falling within the bounds. Also, all the test
statistics are found to be less than the values of the chi-
squared for 40 degrees of freedom. The values of the white
noise variance are given in table 5 for all the stations. Thus,
the AR(p) models describe well the relative global solar
radiation data for all the four stations in the Kingdom of
Jordan.

Table 3(c).  Autoregressive coefficients for Dier Alla

Table 3(d).  Autoregressive coefficients for Irbid

Order of 
coefficients, p 

AR 
coefficients,θp 

Ratio of coefficients to 
1.96*standard 

deviation 
1 0.433 3.0969 
2 0.214 1.5353 

 

Fig. 4. Plot of the autocorrelation function of the white noise
for Amman

Fig. 5. Plot of the partial autocorrelation function of the
white noise for Amman

Table 4.  Random test statistics

Stations QLB(h=40) Q̂ (h=40) χ2(h=40) 

Amman 40.1 53.4 55.8 
Aqaba 23.2 49.6 55.8 
Dier Alla 47.8 25.8 55.8 
Irbid 24.2 48.1 55.8 

Stations White noise variance, σ2 
Amman 0.0537 
Aqaba 0.0228 
Dier Alla 0.0323 
Irbid 0.0446 

Table 5.  White noise variances

Order of  
coefficients, 

p 

AR 
coefficients, 

θp 

Ratio of coefficients 
 to 1.96*standard 

error 
1 0.392 2.6880 
2 0.067 0.0449 
3 0.029 0.1957 
4 -0.038 -0.2539 
5 -0.047 -0.3137 
6 -0.021 -0.1406 
7 0.024 0.1636 
8 0.109 0.7290 
9 -0.046 -0.3086 

10 0.012 0.0840 
11 -0.071 -0.4741 
12 0.079 0.5284 
13 -0.018 -0.1192 
14 0.077 0.5112 
15 -0.060 -0.3967 
16 0.062 0.4161 
17 0.0627 0.4172 
18 -0.081 -0.5369 
19 0.064 0.4278 
20 -0.050 -0.3325 
21 0.017 0.1152 
22 0.019 0.1280 
23 0.003 0.0217 
24 0.105 0.7002 
25 -0.096 -0.6360 
26 0.202 1.3498 
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10.    CONCLUSIONS

Relative global solar radiations of four stations in the
Kingdom of Jordan are analyzed using time series technique.
The deterministic components are removed by double
differencing. The ACFs and PAC’s of the sample indicate
data dependency. The sample is fitted to AR(p) models and
the ACFs, PACFs and random test statistics of the models
are evaluated. These parameters support AR(p)
representation of the data.
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NOMENCLATURE

B backward shift operator
h time series lag
p order of autoregressive process
q order of moving average process
QLB Ljung-Box statistic

Q
)

McLeod-Li statistic
t time series index
x sample mean function
xt time series of observed data
Xt model time series
Zt white noise
yt sample time series containing deterministic

components
Greek letters
μ mean function of time series
Γ covariance function of a time series

γ) sample autocovariance function
ρ autocorrelation function

ρ) sample autocorrelation function
α sample partial autocorrelation function
φ autoregressive coefficients
θ moving average coefficients
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