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Abstract – The present study is conducted in order to demonstrate the capability of the artificial neural network 

(ANN) in predicting the heat transfer in an air-cooled heat exchanger equipped with butterfly inserts. The effects of 

the inclined angle of the inserts (θ) and Reynolds number (Re) variation on average heat transfer in the air cooler 

are considered via this prediction. The training data for optimizing the ANN structure is based on available 

experimental data. The Levenberg-Marquardt back propagation algorithm is used for ANN training. The proposed 

ANN is developed using MATLAB functions. For the best ANN structure obtained in this investigation, the mean 

relative errors of 0.109% and 0.509%were reached for the training and test data respectively. The results show that 

predicted values are very close to experimental ones. 

 

Keywords – Air-cooled heat exchanger, artificial neural network (ANN), butterfly inserts, inclined angle, modeling.  

 

 
1. INTRODUCTION 

It is commonly known that the heat transfer rate of heat 

exchangers, especially for single-phase flows, can be 

improved through many enhancement techniques. In 

general, heat transfer enhancement (HTE) techniques 

can be divided into two categories: (1) active techniques 

which need an external power source and (2) passive 

techniques which do not need an external power source. 

Some examples of passive HTE methods include: 

insertion of twisted stripes and tapes [1], [2], insertion of 

coil wire and helical wire coil [3], [4] and mounting of 

turbulent decaying swirl flow devices [5], [6]. Despite 

the high pressure drop caused by an insert in embedded 

tubes, the use of tube inserts in heat exchangers has 

received a lot of attention during the last two decades 

[2], [7]. The increase in turbulence intensity and 

swirling flow may be the main reasons for HTE induced 

by tube inserts. Sivashanmugam and Suresh [8] studied 

the heat transfer and friction factor characteristics of 

circular tube fitted with full-length helical screw element 

of different twist ratio, and helical screw inserts with 

different spacer length. The aim of the paper was to 

investigate the effect of spacer length on heat transfer 

augmentation and friction factor, and the effect of twist 

ratio on heat transfer augmentation and friction factor. It 

was reported that heat transfer increases with the twist 

ratio and friction factor also increases with the twist 

ratio. Naphon [9] experimentally investigated the heat 

transfer characteristics and the pressure drop in the 

horizontal double pipes with twisted tape insert. The 

effects of relevant parameters on the heat transfer and 
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pressure drop were considered in the paper. It was 

observed that the twisted tape insert has important effect 

on enhancing heat transfer rate. However, the pressure 

drop also increases. Sivashanmugam and Suresh [10] 

experimentally studied the heat transfer and friction 

factor characteristics of laminar flow through a circular 

tube fitted with helical screw-tape inserts. The main 

focus of the study was to investigate the effects of the 

Reynolds number and twist ratio of the inserts on heat 

transfer and friction factor characteristics of the tube. It 

was shown that the heat transfer increases with the twist 

ratio and friction factor also increases with the twist 

ratio. Chang et al. [11], [12] presented a comparison 

between the heat transfer and friction factor 

characteristics of smooth twisted tape with broken and 

serrated twisted tape inserts, based an experimental 

study. Sivashanmugam and Suresh [13] conducted an 

experimental study on the heat transfer and friction 

factor characteristics of turbulent flow through a circular 

tube fitted with helical screw-tape inserts. The effects of 

the Reynolds number and twist ratio of inserts were 

considered in this investigation. It was found that heat 

transfer and friction factor increase with the twist ratio. 

Murugesan et al. [14] investigated the effects of V-cut 

twisted tape inserts on heat transfer, friction factor and 

thermal performance factor characteristics in a circular 

tube. The experiments included the twist ratios (Y) and 

different combinations of depth (DR) and width ratios 

(WR). The results indicated that the average Nusselt 

number and average friction factor in the tube with V-

cut twisted tape increase with the decreasing twist ratios 

(y), width ratios (WR) and increasing depth ratios (DR). 

Sivashanmugam and Suresh [15] studied the heat 

transfer and friction factor characteristics of circular 

tube fitted with full-length helical screw element of 

different twist ratio, and helical screw inserts with 

different spacer length. The effect of spacer length on 

heat transfer augmentation and friction factor, and the 

effect of twist ratio on heat transfer augmentation and 

friction factor were presented separately. It was reported 

that the heat transfer and friction factor increase with the 
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twist ratio. Moreover, the heat transfer for the helical 

twist decreases with increasing the spacer length. 

Rahimi et al. [16] numerically and experimentally 

investigated the heat transfer and friction factor 

characteristics of a tube equipped with modified twisted 

tape inserts. Four types of inserts including the classic, 

perforated, notched and jagged twisted tape inserts were 

employed in the experiments. The results indicated that 

the heat transfer and performance of the jagged insert 

are higher than other ones. Shabanian et al. [17] 

numerically and experimentally studied the heat transfer 

enhancement in an air cooler equipped with different 

tube inserts. It was observed that using the different tube 

inserts (butterfly, jagged and classic twisted tape 

inserts), increases the heat transfer from the air cooler. 

In addition, it was shown that by using the butterfly 

insert with an inclined angle of 90◦, maximum heat 

transfer is obtained. Also, the results revealed that the 

thermal performance factor decreases with the increase 

in Reynolds number, due to the more significant role of 

inserts in increasing the turbulence intensity at lower 

velocities.  

 The current study is mainly focused on the 

modeling of the heat transfer in an air cooler equipped 

with butterfly inserts using an Artificial Neural Network 

(ANN). The applied experimental data to train and test 

the network were obtained by Shabanian et al. [17]. The 

ANN is presently one of the powerful tools widely used 

for modeling of various heat transfer processes. Sozen 

and Arcaklioglu [18] developed an ANN based model 

for the Exergy analysis of an ejector-absorption heat 

transformer. Pesteei and Mehrabi [19] Modeled the 

convection heat transfer of supercritical carbon dioxide 

in a vertical tube at low Reynolds numbers, using a 

neural network. Mohanraj et al. [20] demonstrated the 

capability of ANN approach in predicting the 

performance of a direct expansion solar assisted heat 

pump. Zdaniuk et al. [21] presented a neuro-based 

model for correlating heat transfer and friction in 

helically-finned tubes. Seyedan and Ching [22] applied 

ANN for the Sensitivity analysis of freestream 

turbulence parameters on stagnation region heat transfer 

using a neural network. Krzywanski and Nowak [23] 

adopted an ANN model to predict the heat transfer 

coefficient in the furnace of CFB boilers. Xie et al. [24] 

employed an ANN model to forecast the performance of 

laminar and turbulent heat transfer and fluid flow of heat 

exchangers having large tube-diameter and large tube-

row by artificial neural networks. 

2.  EXPERIMENTAL APPARATUS 

A schematic view of the experimental rig [17] is shown 

in Figure 1a. The rig consists of two fans and a set of 

copper tubes. The set of tubes has three sections 

including a calming section, bent tube and outlet section. 

The fluid enters the calming section which has a length 

of 2 m to eliminate the entrance effect. The temperature 

and pressure are measured at the end of this section at 

the inlet of bent tube section. Then, the fluid passes 

through nine bends in the 6.5m length of bent tube and 

reaches the outlet section. The pressure and the 

temperature are measured at the outlet section. The 50 

W fans with 1400 rpm rotation speed are placed at a 

20cm distance beneath the bent tube and entire assembly 

is enclosed in a 60 × 100 × 50 cm cubic channel [17]. 

Hot water from a 100 liter reservoir equipped with 

heaters enters the bent tube after passing through the 

rotameter with a 58
°
C temperature. Water volumetric 

flow rate varies from 100 lit/hr to 400 lit/hr, which 

corresponds to Reynolds numbers from 4021 to 16118. 

The tube inlet and outlet water pressure and temperature 

are measured through two pressure transmitters and a 

copper-constantan thermocouple. Moreover, in order to 

determine the average Nusselt number, the temperatures 

at 20 different positions on the outer surface of the tube 

are measured. All twenty temperature sensing probes are 

connected to a data logger set [17]. In the experiments, 

the butterfly insert, is placed in the bent tube. Figure 1b 

shows the bent tube, fan and tube inserts used in the 

experiment. The tube applied here has a 17mm of outer 

diameter and a 1mm thickness. The butterfly inserts are 

made from an aluminum sheet with a 0.5mm thickness 

and consist of a holding rod with a 1.9mm diameter. 

These inserts are used at three inclined angles of 45
o
, 90

o 

and 135
o 

between the butterfly piece and the rod with a 

6cm pitch length. In the butterfly arrangement, pieces 

are placed on the rod to increase the flow turbulence 

intensity in the tube. Also the pieces on the rod are 

twisted slightly in order to reduce the blocking effect. 

 

 

(a) 
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(b) 

Fig. 1. (a) Schematic diagram of the experimental rig and (b) the used tools in the experiment. 

 

3.  METHOD OF MODELING 

3.1 Computational Intelligence Model 

The artificial neural networks (ANNs) are strong tools 

for the prediction and simulation in various engineering 

applications. In this study, the heat transfer in an air-

cooled heat exchanger equipped with butterfly inserts, is 

adopted as a function of two variables namely the 

inclined angle of butterfly inserts (θ) and Reynolds 

number (Re). Therefore an ANN model as shown in 

Figure 2 is developed with the inclined angle (θ) ranging 

from 45° to 135° and Reynolds number (Re) from 4021 

to 16118 as inputs and average Nusselt number (Nu) as 

desired output. 

3.2 The ANN Advantages  

The new techniques such as fuzzy logic (FL) [25], 

artificial neural network (ANN) and adaptive neuro-

fuzzy inference system (ANFIS) consume less time for 

computation and offer better accuracy as compared to 

traditional techniques used for the modeling and 

prediction purposes. In addition, since the data used for 

developing the ANN, ANFIS [26] and etc is based on 

training data, therefore, we can test the validity of the 

proposed models with the test data. Since for developing 

a correlation, we basically use the total data, therefore it 

is not possible to carry on with validity business. It is 

useful mentioning that, among these new techniques, the 

ANN and ANFIS are widely used for the modeling and 

prediction purposes. In the current study, the ANN 

model is preferred due to following reasons: 

a) The speed of training the ANN is more than 

that of the ANFIS.  

b) Two outputs in the ANFIS, requires designing 

wo networks whereas in the ANN case, it is 

possible to consider more than one output with 

a single network.  

c) Increasing the number of inputs, increases the 

time of ANFIS training whereas, the ANN 

training time is affected by the number of 

inputs but not that much. 

d) Adding an extra input to the ANN, requires that 

an additional neuron with a simple relation (for 

example a linear or Tansig relation) to be added 

to the network, but in the ANFIS case by 

adding a similar input to the network, in fact 

one membership function having a nonlinear 

relationship should be  added, which in turn 

increases the computations volume and 

subsequently, decreases the training speed of 

the network.   

3.3 Feed Forward Artificial Neural Networks   

In this study, the feed forward multi-layer perceptron 

(MLP) network is selected among the main neural 

network architectures used in engineering. The ANN is 

constructed as a massive connection model of simply 

designed computing unit, called “neuron”. Figure 3 

illustrates a simple model of -inputs single-output 

neuron. All the input signals are summed up as and the 

amplitude of the output signal is determined by the 

nonlinear activation function. 

 In this work, the sigmoid function ( )f z  is used 

given as follow [27], 
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 In the limit of k = ∞ , as the slope approaches the 

infinity, ( )f z  behaves like a threshold function. Here, 

the sigmoid function is adopted with moderate slope so 

that the network can output continuous range of values 

from −1 to 1, which brings the differentiability of the 

network [27], [28]. Here, a Multilayer Perceptron 

(MLP) type network is adopted with three layers, which 

has been used for various applications [29]-[31]. The 

architecture of the perceptron neural network is shown 

in Figure 4.  
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 Fig. 2.  A simplified overview of the proposed ANN model for heat transfer modeling. 

 

Fig. 3.  Basic model of multi-inputs one-output neuron. 

 

Fig. 4.  Three layer multilayer perceptron consisting ‘input’, 'hidden' and 'output' layers. 

 

 

For clear notation, the indices i , j and k will be used 

for the units corresponding to “input”, “hidden” and 

“output” layers, respectively (see Figure 4). Note also 

that in  and io are used to represent the input and 

output to the 
thi neuron, respectively. Input-output 

properties of the neurons in each layer can be simply 

expressed in mathematical term as [29],  

( ) ; ( ) ; ( )
i i j j k k

o f n o f n o f n= = =
  (2) 

 Whereas inputs to the neurons are given as, 
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 Here, iN and 
jN represent the numbers of the 

units belonging to “input” and “hidden” layers, while 

ijw denotes the synaptic weight parameter which 

connects the neurons i and j. Threshold parameter (bias) 

with respect to the neuron j is represented by
jθ . We 

introduce the sigmoid function only in “hidden” layer to 

realize smooth and moderate response of the ANN and 

the linear function for the output layer. This architecture 

of ANN is a good function approximator. The overall 

response of the present network is given as, 
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 Where, 
jn is defined by Equation 2. ANN training 

is an optimization process in which an error function is 

minimized by adjusting the ANN parameters (weights 
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and biases). When an input training pattern is 

introduced to the ANN, it calculates an output. Output is 

compared with the real output (experimental data) 

provided by the user. This difference is used by 

optimization technique to train the network. The error 

function to be minimized in our study is Mean Relative 

Error, MRE, and is given as follow, 

 ∑
=

−
×=

n

i j

jj

y

oy

n
MRE

1

1
           (4) 

 Where, 
jy  is target data and 

jo  is the output of 

the neural networks. In our method the target data is the 

experimental data. The network is trained via the fast 

convergence gradient-descend back-propagation [31] 

method with momentum term for the nonnegative 

energy function [27], [29]. The back-propagation 

training algorithm is an iterative gradient algorithm, 

designed to minimize the mean relative error between 

the predicted output and the desired output 

(experimental data). The algorithm of training the 

network with back-propagation is summarized as 

follows: 

i. Initialize the parameters: set all weights to 

small  random values. 

ii. Present input and output pairs: present a 

continuous valued input vector and specify 

the desired outputs. Usually the training sets 

are normalized to values between 0 and 1 

during processing. 

iii. Compute the output of each node in the 

hidden layer. 

iv. Compute the output of each node in the 

output layer. 

v. Compute the output layer error between the 

target and the observed data.  

vi. Compute the hidden layer error. 

vii. Adjust the weights and thresholds in the 

output layer. 

viii. Adjust the weights and thresholds in hidden 

layer. 

4. MODELING RESULTS  

Twenty one values for the average Nusselt number from 

the experimental data obtained by Shabanian et al. [17] 

are used to build up the ANN model, fifteen data (about 

70% of the total data) are used for training and the rest 

six data (about 30% of the total data) are used for testing 

the ANN model. The final ANN architecture used in this 

study is described in Table 1. Moreover, additional 

information related to the network parameters can be 

observed in this table. The training and testing results of 

the proposed ANN model are shown in Figures 5 and 6. 

The comparison between average Nusselt numbers 

obtained from the experiments and predicted ones by the 

ANN model, as a function of inclined angle (θ) for some 

arbitrary Reynolds numbers are shown in Figure 7. 

According to this figure and also the results shown in 

Figures 5 and 6, the maximum errors of the proposed 

ANN model in predicting the Nusselt number for the 

training and test data are 0.325% and 1.157%, 

respectively. Also the mean relative errors for the 

training and test data are 0.109% and 0.509%, 

respectively. Since, the error values are low, therefore, it 

can be concluded that there is good consistency between 

the experimental and predicted results for the training 

and test data sets. Hence, the ANN results can be 

applied to model the experiments precisely. As it can be 

observed from Figure 7, the tube fitted with butterfly 

insert with inclined of 90°
 
has higher Nusselt number in 

comparison with other two inclined angles. This result 

may be explained by the generation of stronger 

turbulence intensity and more rapid mixing of flow 

created by this insert. More discussions on the physical 

significance of the obtained results can be found 

elsewhere [17]. 

 

Table 1. The optimum architecture and specifications of the proposed ANN model. 

Neural network MLP 

Number of neurons in the input layer 2 

Number of neurons in the first hidden layer 2 

Number of the weight parameters in the first hidden layer 4 

Number of the bias parameters in the first hidden layer 2 

Number of neurons in the second hidden layer 6 

Number of the weight parameters in the second hidden layer 24 

Number of the bias parameters in the second hidden layer 6 

Number of neurons in the output layer 1 

Number of the weight parameters in the output layer 24 

Number of the bias parameters in the output layer 1 

Total number of weight parameters  52 

Total number of bias parameters  9 

Number of iterations  100 

Activation function  Tansig (obtained by setting k=1 in Equation1) 

Training function  Levenberg-Marquardt back propagation 
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Fig. 5.  The comparison between the experimental and predicted values of average Nusselt number using ANN for training 

data. 

 

Fig. 6.  The comparison between the experimental and predicted values of average Nusselt number using ANN for testing 

data. 

 

Fig. 7.  Comparison between experimental and predicted values of average Nusselt number using ANN for different 

Reynolds numbers. 

 

6. CONCLUSIONS 

In this paper, an artificial neural network (ANN) was 

employed in order to model and predict the heat transfer 

in an air-cooled heat exchanger equipped with butterfly 

inserts. The comparison between experimental and 

predicted values of proposed ANN model showed that 

there is excellent consistency between the predicted heat 

transfer and the experimental results with least error. 

This means that the proposed ANN model is a reliable 

flexible mathematical structure for the modeling and 

prediction of results due to its high accuracy and 
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therefore, it can be used to simulate the experiments 

precisely.  

NOMENCLATURE 

A   Heat transfer area (m2) 

Q  Heat transfer rate (W), 

)( iop TTmCQ −=  

Q′  Heat transfer rate to the air surrounded the 

tube (W),   )( bw TThAQ −=′  

pC  Specific heat capacity (kJ/kg⋅K) 

D  Diameter of the smooth tube (m) 

hD  Hydraulic diameter (m) 

h  Heat transfer coefficient (W/m2⋅K), 

)(/)( bwiop TTATTmCh −−=  by 

setting QQ ′=  

k  Thermal conductivity (W/m⋅K) 

m  Mass flow rate (kg/s) 

Nu  Nusselt number, KhDNu h /=  

P  Static pressure (Pa) 

R-Sq R-squared 

R-Sq(adj) Adjusted R-squared 

Re  Reynolds number, vUDh /Re =  

STD
 

Standard deviation
 

bT  
Bulk temperature (K),

 
2/)( iob TTT +=  

iT  
Inner wall surface (K) 

oT  
Outer wall surface (K) 

wT  Local wall temperature measured at the outer 

wall surface of the tubes
 
(K)

     
 

wT  
Average wall temperature (K), 

20/)(∑= ww TT  

U  Mean velocity (m/s) 

Greek Letters 

v  Kinematic viscosity (m2/s) 

θ Inclined angle 
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