Multi-objective Optimal Power Flow Using Fuzzy Satisfactory Stochastic Optimization
Abstract
Keywords
Full Text:
PDFReferences
Carpentier J., 1962 Contribution á l’étude du dispatching économique. Bulletin de la Société Française des Électriciens3: 431-447.
Lesieutre. B.C., 2005. Convexity of the set of feasible injections and revenue adequacy in FTR markets. IEEE Transactions on Power Systems 20: 1790-1798.
Molzahn D.K., 2018. Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems. IEEE Transactions on Circuits and Systems II: Express Briefs 65(5): 672-676.
Wu D. and B.C. Lesieutre. 2018. A Deterministic method to identify multiple local extrema for the AC optimal power flow problem. IEEE Transactions on Power Systems 33(1): 654-668.
Nguyen T.T., 2019. A high-performance social spider optimization algorithm for optimal power flow solution with single objective optimization. Energy 171(C): 218-240.
Bakirtzis A.G., Biskas N.P., Zoumas E.C, and Petrids V., 2002 Optimal power flow by enhanced genetic algorithm. IEEE Transactions on Power Systems 17(2): 229-236.
Abido M.A., 2002. Optimal power flow using tabu search algorithm, Electric Power Components and Systems 30(5): 469-483.
Bouchekara H.R.E.H., 2014. Optimal power flow using black-hole-based optimization approach, Applied Soft Computing 24(C): 879-888.
Ladumor D.P., Bhesdadiya R.H., Trivedi I.N., and Jangir P., 2017. Optimal power flow problem solution with SVC using meta-heuristic algorithm In the Proceedings of the 3rd International Conference on Advances in Electrical, Electronics, Information, Communication and Bioinformatics (AEEICB17), 27-28 February 2017, Chennai, India.
Li S., Gong W., Wang L., Yah X., and Hu C., 2020. Optimal power flow by means of improved adaptive differential evolution. Energy 198: 117314.
Abido M.A., 2002. Optimal power flow using particle swarm optimization. Electrical Power and Energy Systems 24(7): 563-571.
Kumar C. and C.P. Raju. 2012. Constrained optimal power flow using particle swarm optimization. International Journal of Emerging Technology and Advanced Engineering 2(2): 235-241.
Turkay B.E. and R.I. Cabadag. 2013. Optimal power flow solution using particle swarm optimization algorithm, EuroCon 2013: 1418-1424.
Le L.D., Ho L.D, Polprasert J., Ongsakul W., Vo D.N., and Le D.A, 2014. Stochastic weight trade-off particle swarm optimization for optimal power flow. Journal of Automation and Control Engineering 2(1): 31-37.
Sivasubramani S. and K.S. Swarup. 2011. Multi-objective harmony search algorithm for optimal power flow problem. Electrical Power and Energy Systems 33(3): 745-752.
Deb K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc. 605 3rd Avenue, New York, NY, United States.
Ramesh V.C. and X. Li. 1997. A fuzzy multiobjective approach to contingency constrained OPF. IEEE Transactions on Power Systems 12(3): 1348-1354.
Khorsandi A., Hosseiniana S.H., and Ghazanfari A., 2013. Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem. Electric Power Systems Research 95: 206-213.
Liang R.H. and Y.Y. Hsu. 1994. Fuzzy linear programming: an application to hydroelectric generation scheduling. IEEE Proceedings- Generation, Transmission and Distribution 141(6): 568-574.
Chayakulkheeree K., 2011. Unified multi-objective optimal power flow considering emissions with fuzzy network and generators ramp-rate constraints In the Proceedings of the 8th Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology (ECTI), 17-19 May 2011, Khon Kaen, Thailand.
Khamees A.K., Abdelaziz A.Y., Eskaros M.R., Alhelou H.H., and Attia M.A., 2021. stochastic modeling for wind energy and multi-objective optimal power flow by novel meta-heuristic method. IEEE Access 9: 158353-158366.
Shaheen A.M., Farrag S.M., and El-Sehiemy R.A., 2017. MOPF solution methodology. IET Generation, Transmission and Distribution 11(2): 570-581.
Naderia E., Pourakbari-Kasmaeib M., Cernac F.V, and Lehtonen M., 2021. A novel hybrid self-adaptive heuristic algorithm to handle single- and multi-objective optimal power flow problems. International Journal of Electrical Power & Energy Systems 125.
Kahraman H.T., Akbel M., and Duman S., 2022. Optimization of optimal power flow problem using multi-objective manta ray foraging optimizer. Applied Soft Computing 116: 108334.
Zimmermann H.-J., 1987. Fuzzy Sets. Decision Making, and Expert Systems: Kluwer Academic Publishers, Boston, USA.
Kennedy J., and R. Eberhart. 1995. Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks 4: 1942-1948.
Alsac O. and B. Stott. 1974. Optimal load flow with steady state security. IEEE Transactions on Power Apparatus and Systems. PAS-93:745-751.
Sivasubramani S. and K.S. Swarup. 2011. Multi-objective harmony search algorithm for optimal power flow problem. International Journal of Electrical Power & Energy Systems 33(3): 745-75.
Bakirtzis A.G., Biskas N.P., Zoumas C.E., and Petrids V., 2002. Optimal power flow by enhanced genetic algorithm. IEEE Transactions on Power Systems 17: 229-236.
Bouchekara H.R.E.H., 2014. Optimal power flow using black-hole-based optimization approach. Applied Soft Computing 24: 879-888.
Kumari M.S. and S. Maheswarapu. 2010. Enhanced genetic algorithm-based computation technique for multi-objective optimal power flow solution. Electrical Power and Energy Systems 32(6): 736-742.
Ullah Z.,Wang S., Radosavlievic J., and Lai J., 2019. A Solution to the optimal power flow problem considering WT and PV generation IEEE Access 7: 46763-46772.