Modelling of a Solar Ejector Cooling System using CPV Collector
Abstract
Keywords
Full Text:
PDFReferences
Wang C., Wu X., Sun S., Zhang Z., and Xing Z., 2022. Potential evaluation of water-cooled multiple screw chillers with serial water loops and development of ultra-efficient dual screw chillers. Applied Thermal Engineering 210: 118340.
Kober T., Schiffer H.W., Densing M., and Panos E., 2020. Global energy perspectives to 2060–WEC's World Energy Scenarios 2019. Energy Strategy Reviews 31: 100523.
González-Torres M., Pérez-Lombard L., Coronel J.F., Maestre I.R., and Yan D., 2022. A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports 8: 626-637.
IEA, Reports. 2019. The future of cooling.
Yadav V.K., Sarkar J., and Ghosh P., 2022. Thermodynamic, economic and environmental analyses of novel solar-powered ejector refrigeration systems. Energy Conversion and Management 264: 115730.
Tashtoush B., Songa I., and Morosuk T., 2022. Exergo-economic analysis of a variable area solar ejector refrigeration system under warm weather conditions. Energies 15 (24): 9540.
Besagni G., Mereu R., and Inzoli F., 2016. Ejector refrigeration: A comprehensive review. Renewable and Sustainable Energy Reviews 53: 373-407.
Elakhdar M., Landoulsi H., Tashtoush B., Nehdi E., and Kairouani L., 2019. A combined thermal system of ejector refrigeration and organic Rankine cycles for power generation using a solar parabolic trough. Energy Conversion and Management 199: 111947.
Bejan A., Vargas J.V.C., and Sokolov M., 1995. Optimal allocation of a heat-exchanger inventory in heat driven refrigerators. Int. J. Heat Mass Transfer 38: 2997-3004.
Yen R.H., Huang B.J., Chen C.Y., Shiu T.Y., Cheng C.W., Chen S.S., and Shestopalov K., 2013. Performance optimization for a variable throat ejector in a solar refrigeration system. International Journal of Refrigeration 36(5): 1512-1520.
Huang B.J., Chang J.M., Petrenko V.A., and Zhuk K.B., 1998. A solar ejector cooling system using the refrigerant R141b. Solar energy 64: 223-226.
Huang B.J., Ko H.W., Ton W.Z., Wu C.C., Chang H.S., Hsu H.Y., and Petrenko V.A., 2018. Modified solar-assisted ejector cooling system. EuroSun 2018 Conference Proceedings.
Huang B.J., Chang J.M., Wang C.P., and Petrenko V.A., 1998. A 1-D analysis of ejector performance. International Journal of Refrigeration 22: 354-364.
Nguyen V.M., Riffat S.B., and Doherty P.S., 2001. Development of a solar-powered passive ejector cooling system. Applied Thermal Engineering 21:157-168.
Cheng Y., Wang M., and Yu J., 2021. Thermodynamic analysis of a novel solar-driven booster-assisted ejector refrigeration cycle. Solar Energy 218: 85-94.
Abbady K., Al-Mutawa N. and Almutairi A., 2023. The performance analysis of a variable geometry ejector utilizing CFD and artificial neural network. Energy Conversion and Management 291: 117318.
Chunnanond K. and S. Aphornratana. 2004. Ejectors: applications in refrigeration technology. Renewable and Sustainable Energy Reviews 8(2): 129-155.
Braimakis K., 2021. Solar ejector cooling systems: A review. Renewable Energy 164: 566-602.
Sornek K., Żołądek M., Papis-Frączek K., Szram M., and Filipowicz M., 2023. Experimental investigations of the microscale concentrated photovoltaic/thermal system based on a solar parabolic trough concentrator. Energy Reports 9: 86-97.
Vignesh N., Arunachala U.C., and Varun K., 2023. Innovative conceptual approach in concentrated solar PV/thermal system using Fresnel lens as the concentrator. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45(4): 10122-10143.
Kribus A., Kaftori D., Mittelman G., Hirshfeld A., Flitsanov Y., and Dayan A., 2006. A miniature concentrating photovoltaic and thermal system. Energy Conversion and Management 47: 3582-3590.
Abdulateef J.M., Sopian K., Alghoul M.A., and Sulaiman M.Y., 2009. Review on solar-driven ejector refrigeration technologies. Renewable and Sustainable Energy Reviews 13: 1338-1349.
ENEA, The Italian National Agency for New Technologies, Energy and the Environment.
Renno C., D'Agostino D., Minichiello F., Petito F., and Balen I., 2019. Performance analysis of a CPV/T-DC integrated system adopted for the energy requirements of a supermarket. Applied Thermal Engineering 149: 231-248.
Wang X., Yan Y., Li B., Hao X., Gao N., and Chen G., 2020. Prospect of solar-driven ejector-compression hybrid refrigeration system with low GWP refrigerants in summer of Guangzhou and Beijing. International Journal of Refrigeration 117: 230-236.
Renno C. and F. Petito. 2018. Triple-junction cell temperature evaluation in a CPV system by means of a Random-Forest model. Energy Conversion and Management 169: 124-136.
Wang G., Wang F., Chen Z., Hu P., and Cao R., 2019. Experimental study and optical analysis of a multi-segment plate concentrator (MSP) for a concentrating solar photovoltaic (CPV) system. Renewable Energy 134: 284-291.
Matlab R2023b, The MathWorks.
REFPROP: Reference Fluid Thermodynamic and Transport Properties Database: Version 8.0, NIST.
He S., Li Y., and Wang R.Z., 2009. Progress of mathematical modeling on ejectors. Renewable and Sustainable Energy Reviews 13: 1760-1780.
Krajcik M., Straba D., Masaryk M., Sikula O., and Mlynàr P., 2022. Enanching the efficiency of a stram jet ejector chiller for chilled ceiling. Applied Thermal Engineering 211.
Sadeghi M., Mahmoudi S.M.S., and Saray K.R., 2015. Exergonomic analysis and multi-objective optimization of an ejector refrigeration cycle powered by an internal combustion (HCCI) engine. Energy Conversion and Management 96: 403-417.
Wang J.H., Wu J.H., Hu S.S., and Huang B.J., 2009. Performance of ejector cooling system with thermal pumping effect using R141b and R365mfc. Applied Thermal Engineering 29: 1904-1912.
Prabakaran R., Sivalingam V., Kim S.C., Ganesh Kumar P., and Praveen Kumar G., 2022. Future refrigerants with low global warming potential for residential air conditioning system: A thermodynamic analysis and MCDM tool optimization. Environmental Science and Pollution Research 29 (52): 78414-78428.
El-Sayed Y., 1999. A short course in Thermo-economics, Summer School, Ovidius University, Constantza, Romania.
Renno C., 2022. Comparison of the spherical optics and Fresnel lens performance in a point-focus CPV system. International Energy Journal 22: 1-12.