Scattering Dynamics in Thermal Environments Around PEMFC Electrode
Abstract
The study of scattering dynamics in thermal environments around Proton Exchange Membrane Fuel Cell (PEMFC) electrode is crucial for understanding the behavior of charge carriers and the impact of thermal gradients on fuel cell performance. The aim of this work is to develop theoretical model of the Differential Cross Section (DCS) around the anode of PEMFC, focusing on electron interactions within thermal environment generated during H2/Pt reactions. The developed theoretical model, explores the DCS dynamics under varied parameters such as scattering angles, incident electron energies, separation distances between target and incident electrons, considering both temperature effects and their absence. The findings unveil intricate DCS patterns across diverse conditions, offering significant insights into PEMFC efficiency and performance. On comparisons across three polarization scenarios reveal distinctive DCS trends, with linear polarization exhibiting lower values compared to circular, and circular polarization lower than elliptical, concerning scattering angle, energy, and distance separation. Moreover, the study investigates the interplay between DCS and PEMFC current production, the interaction between quantum species formation around electrode resultant output current. The computed of model highlight the influence of interaction surface size, charge analysis, and electrode current density on DCS behavior, providing pathways for optimizing PEMFC performance. Additionally, the study examines temperature variations within PEMFC in relation to current density and surface area. The results underscore complex relationships between these factors, emphasizing their implications for thermal management strategies in PEMFC design. Overall, this study offers comprehensive insights into the intricate dynamics of DCS within PEMFC, furnishing valuable guidance for enhancing PEMFC efficiency and performance across diverse operational contexts.
Keywords
Full Text:
PDFReferences
Dhobi, S. H., Nakarmi, J. J., Yadav, K., Gupta, S. P., Koirala, B., and Shah, A. K. (2022). Study of thermodynamics of a thermal electron in scattering. Heliyon, 8(195602), e12315. https://doi.org/10.1016/j.heliyon.
Banerji, J., and Mittleman, M. H. (1995). Electron-hydrogen atom scattering in a super-intense laser field. Journal of Physics B: Atomic, Molecular and Optical Physics, 28(16), 3603–3614. https://doi.org/10.1088/0953-4075/28/16/013
Bhattacharya, M., Malakar, B., and Sarkar, S. (2002). Scattering of Electron by Hydrogen Atom in the Presence of Two Laser Fields. Physica Scripta, 66(3), 208–212. https://doi.org/10.1238/physica.regular
Dahiri, I., Baouahi, M., Ouali, M., Manaut, B., El Idrissi, M., and Taj, S. (2023). Laser-assisted electron–nucleon scattering. International Journal of Modern Physics B. https://doi.org/10.1142/S0217979224502898
Solovyev, D., Zalialiutdinov, T., and Anikin, A. (2021). Relativistic corrections to the thermal interaction of bound particles. Physical Review Research, 3, 023102. https://doi.org/10.1103/PhysRevRes.3.023102
Dhobi, S. H., Yadav, K., Jha, A. K., Karki, B., and Nakarmi, J. J. (2022). Free Electron-Ion Interaction and Its Effect on Output Current of Permeable Exchange Membrane Hydrogen Fuel. ECS Transactions, 107, 8457. DOI: 10.1149/10701.8457ecst
Li, Y., Cheng, B., Zhang, K., Li, X., Pang, S., and Mao, Z. (2023). Adaptive Hamiltonian-Based Energy Control with Built-In Integrator for PEMFC Hybrid Power Conversion Architecture. Energies, 16, 7855. https://doi.org/10.3390/en16237855
Alaswad, A.,. Omran, A., Sodre, J.R., Wilberforce, T., Pignatelli, G., Dassisti, M., Baroutaji, A., Olabi, A.G. Energies, 14(144), (2021).
Jiao, K., Xuan, J., Du, Q., Bao, Z., Xie, B., Wang, B., Zhao, Y., Fan, L., Wang, H., Hou, Z., Huo, S., Brandon, N.P., Yin, Y., and Guiver, M.D. Nature, 595, (2021).
Habib, MD. S., Arefin, P., Salam, MD. A., Ahmed, K., Uddin, MD. S., Hossain, T., Papri, N., Islam, T. Mater. Sci. Res India, 18(2), (2021).
Tellez-Cruz, M.M., Escorihuela, J., Solorza-Feria, O., Compañ, V. Polymers, 13(3064), (2021).
Yin, T., Chen, D., Hu, T., Hu, S., Li, Y., and Xu, X. (2024a). Optimization of variable cross-sectional flow channel parameters for fuel cells: Numerical analysis and distributional uniformity evaluation. Applied Thermal Engineering, 243, 122639.
Yin, T., Chen, D., Hu, T., Hu, S., Li, R., Wei, T., and Pei, P. (2024b). Experimental investigation and comprehensive analysis of performance and membrane electrode assembly parameters for proton exchange membrane fuel cell at high operating temperature. Energy Conversion and Management, 315, 118740.
Zhou, Y., and Chen, B. (2023). Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review. Renewable and Sustainable Energy Reviews, 185, 113584.
Wang, Z., Liu, Z., Fan, L., Du, Q., and Jiao, K. (2023). Application progress of small-scale proton exchange membrane fuel cell. Energy Reviews, 2(2), 100017.
Kahraman, H., and Akın, Y. (2024). Recent studies on proton exchange membrane fuel cell components, review of the literature. Energy Conversion and Management, 304, 118244.
Maurer, J., and Keller, U. (2021). Ionization in intense laser fields beyond the electric dipole approximation: concepts, methods, achievements and future directions. Journal of Physics B: Atomic, Molecular and Optical Physics, 54(9), 094001. https://iopscience.iop.org/article/10.1088/1361-6455/abf731/pdf
Dhobi, S. H., Gupta, S. P., Yadav, K., Nakarmi, J. J., and Jha, A. K. (2024). Differential cross section with Volkov-thermal wave function in Coulomb potential. Atom Indonesia Journal, 50(1). https://doi.org/10.55981/aij.2024.1309
González de la Cruz, G., and Gurevich, Yu. G. (1996). Electron and photon thermal waves in semiconductors: An application to photothermal effect. Journal of Applied Physics, 80(3), 1726-1727.
Lehman, E. B. (2021). Electrochemistry for materials science. Institute of Metallurgy and Materials Science Polish Academy of Sciences, Poland, Lecture Note.
Kim, B. N. (2022). Angular distribution of electron-helium scattering in the presence of a 1.17 eV laser field (Doctoral dissertation). University of Kentucky, Lexington, KY, United States.
Giri, D. V. (1976). Mathematics notes: One delta function, Part I: A review of various representations and properties of Dirac delta function. Retrieved from http://ece-research.unm.edu/summa/notes/Mathematics/0041.pdf
Masanta, N., and Ghoshal, A. (2021). Dynamics of positron scattering from lithium, sodium and potassium atoms in hot and dense plasmas. Chinese Journal of Physics. https://doi.org/10.1016/j.cjph.2021.01.020
Harris, A. L., Plumadore, A., and Smozhanyk, Z. (2018). Ionization of Hydrogen by Electron Vortex Beam. Journal of Physics B: Atomic, Molecular and Optical Physics, 52, 094001.
Busuladžić, M., Čerkić, A., Odžak, S., Gazibegović-Busuladžić, A., Hasović, E., Habibović, D., and Milošević, D. B. (2014). Atomic and molecular processes generated by linearly polarized few-cycle laser pulses. Physica Scripta, 2014(T162), 014008. https://doi.org/10.1088/0031-8949/2014/T162/014008