Analyses on Transitions to Net-Zero Emissions in Asian Countries
Abstract
Keywords
Full Text:
PDFReferences
UNFCCC, The Paris Agreement (2015). Available: https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf
UNEP, Emissions Gap Report 2023 (2023). Available: https://www.unep.org/resources/emissions-gap-report-2023
IEA, Energy Technology Perspectives 2024 (2024). Available: https://www.iea.org/reports/energy-technology-perspectives-2024
IPCC: Climate Change 2022Mitigation of Climate Change. Cambridge, 2022.
NGFS, NGFS Scenarios for central banks and supervisors (2022). Available: https://www.ngfs.net/en/ngfs-climate-scenarios-central-banks-and-supervisors-september-2022
IEA, Net Zero Roadmap: A Global Pathway to Keep the 1.5 C Goal in Reach (2023). Available: https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach
ICMA, Overview and Recommendations for Sustainable Finance Taxonomies (2021). Available: https://www.icmagroup.org/assets/documents/Sustainable-finance/ICMA-Overview-and-Recommendations-for-Sustainable-Finance-Taxonomies-May-2021-180521.pdf
METI, Japan, Roadmap for Promoting Transition Finance (2023). Available: https://www.meti.go.jp/english/policy/energy_environment/ transition_finance/index.html
Kim H., McJeon H., Jung D., Lee H., Bergero C., and Eom J., 2022. Integrated assessment modeling of korea's 2050 carbon neutrality technology pathways. Energy and Climate Change. 3:100075.
Ma X., Peng T., Zhang Y., Wang L., and Pan X., 2023. Accelerating carbon neutrality could help China's energy system align with below 1.5 °C. Journal of Environmental Management 337: 117753.
Shao T., Pan X., Li X., Zhou S., Zhang S., and Chen W., 2022. China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling. Renewable and Sustainable Energy Reviews 170: 112992.
Gambhir A., Napp T.A., Emmott C.J.M., and Anandarajah G., 2014. India's CO2 emissions pathways to 2050: Energy system, economic and fossil fuel impacts with and without carbon permit trading. Energy 77: 791801.
Rajbhandari S., Winyuchakrit P., Pradhan B.B., Chaichaloempreecha A., Pita P., and Limmeechokchai B., 2024. Thailand’s net‑zero emissions by 2050: analysis of economy‑wide impacts. Sustainability Science 19: 189–202.
Akimoto K., Sano F., Homma T., Oda J., Nagashima M., and Kii M., 2010. Estimates of GHG emission reduction potential by country, sector, and cost. Energy Policy 38: 3384–3393.
Akimoto K., Homma T., Sano F., Nagashima M., Tokushige K., and Tomoda T., 2014. Assessment of the emission reduction target of halving CO2 emissions by 2050: macro-factors analysis and model analysis under newly developed socio-economic scenarios. Energy Strategy Reviews 2: 246–256.
Akimoto K., Sano F., Oda J., Kanaboshi H., and Nakano Y., 2021. Climate change mitigation measures for global net-zero emissions and the roles of CO2 capture and utilization and direct air capture. Energy and Climate Change 2: 100057.
Riahi K., van Vuuren D.P., Kriegler E., Edmonds J., O’Niell B.C., Fujimori S., Bauer N., Calvin K., Dellink R., Fricko O., Lutz W., Popp A., Cuaresma J.C., Samir K.C., Leimbacj M., Jiang L., Kram T., Rao S., Emmerling J., Ebi K., and Tavoni M., 2017. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change 42: 153–168.
Akimoto K., Nagashima M., Sano F., and Ando T., 2024. Gaps between costs and potentials estimated by bottom-up assessments versus integrated assessment models. Energy Strategy Reviews 55: 101521.