Battery First: AI Control for Priority-Based Off-Grid Energy Management
Abstract
Keywords
Full Text:
PDFReferences
Khalid S. and I. Ahmad. 2023. Optimizing energy donation for service restoration in a power distribution system. IEEE Transactions on Sustainable Computing 8(2): 268-279, doi: 10.1109/TSUSC.2022.3227749.
Ganthia B.P., Dharmaprakash R., Choudhary T., Muni T.V., Al Ammar E.A., Seikh A.H., Siddique M.H., and Diriba A., 2022. Simulation model of PV system function in stand-alone mode for grid blackout area. International Journal of Photoenergy 1: 6202802, doi: 10.1155/2022/6202802.
Belabbas B., Allaoui T., Tadjine M., and Denai M., 2019. Power management and control strategies for off-grid hybrid power systems with renewable energies and storage. Energy Systems 10: 355-384, doi: 10.1007/S12667-017-0251-Y.
Indira G., Bhavani M., Brinda R., and Zahira R., 2024. Electricity load demand prediction for microgrid energy management system using hybrid adaptive barnacle mating optimizer with artificial neural network algorithm. Energy Technology 12(5), doi: 10.1002/ente.202301091.
Antonopoulos I., Robu V., Couraud B., Kirli D., Norbu S., Kiprakis A., Flynn D., Elizondo-Gonzalez S., and Wattam S., 2020. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renewable and Sustainable Energy Reviews 130: 109898, doi: 10.1016/j.rser.2020.109899.
Bakare M., Abdulkarim A., Shuaibu A.N., and Muhamad M.M., 2024. Energy management controllers: Strategies, coordination, and applications. Energy Informatics 7: Article number 57, doi: 10.1186/s42162-024-00357-9.
Mohamed N.E.M., Zoghby H.M.E., Abdelhakam M.M., and Elmesalawy M.M., 2024. AI-enabled smart hybrid energy optimization management system for green hydrogen-based islanded microgrids. In Proc. Novel Intelligent and Leading Emerging Sciences Conf. (NILES), doi: 10.1109/NILES63360.2024.10753178.
Alhussein M., Aurangzeb K., and Haider S.I., 2020. Hybrid CNN-LSTM model for short-term individual household load forecasting. IEEE Access 8, doi: 10.1109/access.2020.3028281.
Alwan H.O., Sadeghian H., and Abdelwahed S., 2019. Optimal energy scheduling of an off-grid renewable system used for typical residential households. In Proc. Int. Conf. Computational Intelligence and Communication Networks (CICN), doi: 10.1109/CICN.2019.8902414.
Kalair A., Rauf S., Kalair A., Abas N., Hasan Q.U., and Khan N., 2019. DSM in hybrid AC/DC rooftop PV integrated smart nano grid. In Proc. Int. Conf. Smart and Sustainable Technologies (SpliTech), doi: 10.23919/SpliTech.2019.8783032.
Zhang H., Ma Y., Yuan K., Khayatnezhad N., and Ghadimi N., 2023. Efficient design of energy microgrid management system: A promoted Remora optimization algorithm-based approach. Heliyon 10(1): e23394, doi: 10.1016/j.heliyon.2023.e23394.
Awaji H.H.H., Alhussainy A.A., Alobaidi A., Alghamdi S.M., Alghamdi S.S., and Alruwaili, M., 2024. Real-time energy management simulation for enhanced integration of renewable energy resources in DC microgrids. Frontiers in Energy Research 12, doi: 10.3389/fenrg.2024.1458115.
Himeur Y., Ghanem K., Alsalemi A., Bensaali F., and Amira A., 2021. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy 287: 116601, doi: 10.1016/j.apenergy.2021.116601.
Al-Ogaili A.S., Hashim T.J.T., Rahmat N.A., Ramasamy A.K., Marsadek M.B., Faisal M., and Hannan M.A., 2019. Review on scheduling, clustering, and forecasting strategies for controlling electric vehicle charging: Challenges and recommendations. IEEE Access 7, doi: 10.1109/access.2019.2939595.
Tipauksorn P., Luekhong P., Thongpron J., Kamnarn U., Yingkayun K., and Namin A., 2023. Stereo vision-based turn-alignment optimization for wireless power transmission positioning. In Proc. IEEE Transp. Electrification Conf. and Expo, Asia-Pacific (ITEC Asia-Pacific), doi: 10.1109/ITECAsia-Pacific59272.2023.10372364.
Sankarananth S., Karthiga M., Suganya E., Sountharrajan S., and Bavirisetti D.P., 2023. AI-enabled metaheuristic optimization for predictive management of renewable energy production in smart grids. Energy Reports 10: 1299-1312, doi: 10.1016/j.egyr.2023.08.005.
Lissa P., Deane C., Schukat M., Seri F., Keane M., and Barrett E., 2020. Deep reinforcement learning for home energy management system control. Energy and AI 3: 100043, doi: 10.1016/j.egyai.2020.100043.
Singh A.R., Kumar R.S., Bajaj M., Khadse C.B., and Zaitsev I., 2024. Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources. Scientific Reports 14: 19207, doi: 10.1038/s41598-024-70336-3.
Mumbere K.S., Sasaki Y., Yorino N., Zoka Y., Tanioka Y., and Bedawy A., 2023. A resilient prosumer model for microgrid communities with high PV penetration. Energies 16(2): 621, doi: 10.3390/en16020621.
Irmak E., Kabalc E., and Kabalc Y., 2023. Digital transformation of microgrids: A review of design, operation, optimization, and cybersecurity. Energies 16(12): 4590, doi: 10.3390/en16124590.
Alotaibi B., 2024. Advancing energy performance efficiency in residential buildings for sustainable design: Integrating machine learning and optimized explainable AI (AIX). International Journal of Energy Research 1: 6130634, doi: 10.1155/2024/6130634.
Nankya M., Chataut R., and Akl R., 2023. Securing industrial control systems: Components, cyber threats, and machine learning-driven defense strategies. Sensors 23(21): 8840, doi: 10.3390/s23218840.
Muhammad A., Ishaq A., Igbinovia O.B., and Idris M.B., 2023. Artificial intelligence and machine learning for real-time energy demand response and load management. Journal of Technology Innovations and Energy 2(2), doi: 10.56556/jtie.v2i2.537.
Tipauksorn P., Luekhong P., Okada M., Thongpron J., Nadee C., and Yingkayun K., 2025. Optimized ensemble learning for non-destructive avocado ripeness classification. Smart Agricultural Technology 12: 101114, doi: 10.1016/j.atech.2025.101114.
DOI: https://doi.org/10.64289/iej.25.03A11.4691735
